Cargando…
Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
The increased availability of High-Performance Computing resources can enable data scientists to deploy and evaluate data-driven approaches, notably in the field of deep learning, at a rapid pace. As deep neural networks become more complex and are ingesting increasingly larger datasets, it becomes...
Autores principales: | Hesam, Ahmad, Vallecorsa, Sofia, Khattak, Gulrukh, Carminati, Federico |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-34356-9_32 http://cds.cern.ch/record/2799446 |
Ejemplares similares
-
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
Three dimensional Generative Adversarial Networks for fast simulation
por: Carminati, F, et al.
Publicado: (2018) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Distributed Training of Generative Adversarial Networks for Fast Simulation
por: Vallecorsa, Sofia, et al.
Publicado: (2019)