Cargando…
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
Deep learning methods have been increasingly adopted to study jets in particle physics. Since symmetry-preserving behavior has been shown to be an important factor for improving the performance of deep learning in many applications, Lorentz group equivariance — a fundamental spacetime symmetry for e...
Autores principales: | Gong, Shiqi, Meng, Qi, Zhang, Jue, Qu, Huilin, Li, Congqiao, Qian, Sitian, Du, Weitao, Ma, Zhi-Ming, Liu, Tie-Yan |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP07(2022)030 http://cds.cern.ch/record/2800104 |
Ejemplares similares
-
Does Lorentz-symmetric design boost network performance in jet physics?
por: Li, Congqiao, et al.
Publicado: (2022) -
Particle Transformer for Jet Tagging
por: Qu, Huilin, et al.
Publicado: (2022) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Jet tagging in the Lund plane with graph networks
por: Dreyer, Frédéric A., et al.
Publicado: (2020) -
ParticleNet: Jet Tagging via Particle Clouds
por: Qu, Huilin, et al.
Publicado: (2019)