Cargando…
Lightweight Jet Reconstruction and Identification as an Object Detection Task
We apply object detection techniques based on deep convolutional blocks to end-to-end jet identification and reconstruction tasks encountered at the CERN large hadron collider (LHC). Collision events produced at the LHC and represented as an image composed of calorimeter and tracker cells are given...
Autores principales: | Pol, Adrian Alan, Aarrestad, Thea, Govorkova, Ekaterina, Halily, Roi, Klempner, Anat, Kopetz, Tal, Loncar, Vladimir, Ngadiuba, Jennifer, Pierini, Maurizio, Sirkin, Olya, Summers, Sioni |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/ac7a02 http://cds.cern.ch/record/2801371 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Jet Single Shot Detection
por: Pol, Adrian Alan, et al.
Publicado: (2021) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
por: Que, Zhiqiang, et al.
Publicado: (2021) -
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
por: Loncar, Vladimir, et al.
Publicado: (2021)