Cargando…
Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds
To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Che...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1021/acs.est.0c02100 http://cds.cern.ch/record/2801425 |
_version_ | 1780972695272292352 |
---|---|
author | Wang, Mingyi Chen, Dexian Xiao, Mao Ye, Qing Stolzenburg, Dominik Hofbauer, Victoria Ye, Penglin Vogel, Alexander L Mauldin, Roy L Amorim, Antonio Baccarini, Andrea Baumgartner, Bernhard Brilke, Sophia Dada, Lubna Dias, António Duplissy, Jonathan Finkenzeller, Henning Garmash, Olga He, Xu-Cheng Hoyle, Christopher R Kim, Changhyuk Kvashnin, Alexander Lehtipalo, Katrianne Fischer, Lukas Molteni, Ugo Petäjä, Tuukka Pospisilova, Veronika Quéléver, Lauriane L J Rissanen, Matti Simon, Mario Tauber, Christian Tomé, António Wagner, Andrea C Weitz, Lena Volkamer, Rainer Winkler, Paul M Kirkby, Jasper Worsnop, Douglas R Kulmala, Markku Baltensperger, Urs Dommen, Josef El-Haddad, Imad Donahue, Neil M |
author_facet | Wang, Mingyi Chen, Dexian Xiao, Mao Ye, Qing Stolzenburg, Dominik Hofbauer, Victoria Ye, Penglin Vogel, Alexander L Mauldin, Roy L Amorim, Antonio Baccarini, Andrea Baumgartner, Bernhard Brilke, Sophia Dada, Lubna Dias, António Duplissy, Jonathan Finkenzeller, Henning Garmash, Olga He, Xu-Cheng Hoyle, Christopher R Kim, Changhyuk Kvashnin, Alexander Lehtipalo, Katrianne Fischer, Lukas Molteni, Ugo Petäjä, Tuukka Pospisilova, Veronika Quéléver, Lauriane L J Rissanen, Matti Simon, Mario Tauber, Christian Tomé, António Wagner, Andrea C Weitz, Lena Volkamer, Rainer Winkler, Paul M Kirkby, Jasper Worsnop, Douglas R Kulmala, Markku Baltensperger, Urs Dommen, Josef El-Haddad, Imad Donahue, Neil M |
author_sort | Wang, Mingyi |
collection | CERN |
description | To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C$_7$) oxidation products have a similar volatility distribution to that of α-pinene-derived (C$_{10}$) oxidation products, while naphthalene-derived (C$_{10}$) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force. |
id | cern-2801425 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-28014252022-02-12T20:51:38Zdoi:10.1021/acs.est.0c02100http://cds.cern.ch/record/2801425engWang, MingyiChen, DexianXiao, MaoYe, QingStolzenburg, DominikHofbauer, VictoriaYe, PenglinVogel, Alexander LMauldin, Roy LAmorim, AntonioBaccarini, AndreaBaumgartner, BernhardBrilke, SophiaDada, LubnaDias, AntónioDuplissy, JonathanFinkenzeller, HenningGarmash, OlgaHe, Xu-ChengHoyle, Christopher RKim, ChanghyukKvashnin, AlexanderLehtipalo, KatrianneFischer, LukasMolteni, UgoPetäjä, TuukkaPospisilova, VeronikaQuéléver, Lauriane L JRissanen, MattiSimon, MarioTauber, ChristianTomé, AntónioWagner, Andrea CWeitz, LenaVolkamer, RainerWinkler, Paul MKirkby, JasperWorsnop, Douglas RKulmala, MarkkuBaltensperger, UrsDommen, JosefEl-Haddad, ImadDonahue, Neil MPhoto-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic CompoundsOtherTo better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C$_7$) oxidation products have a similar volatility distribution to that of α-pinene-derived (C$_{10}$) oxidation products, while naphthalene-derived (C$_{10}$) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.oai:cds.cern.ch:28014252020 |
spellingShingle | Other Wang, Mingyi Chen, Dexian Xiao, Mao Ye, Qing Stolzenburg, Dominik Hofbauer, Victoria Ye, Penglin Vogel, Alexander L Mauldin, Roy L Amorim, Antonio Baccarini, Andrea Baumgartner, Bernhard Brilke, Sophia Dada, Lubna Dias, António Duplissy, Jonathan Finkenzeller, Henning Garmash, Olga He, Xu-Cheng Hoyle, Christopher R Kim, Changhyuk Kvashnin, Alexander Lehtipalo, Katrianne Fischer, Lukas Molteni, Ugo Petäjä, Tuukka Pospisilova, Veronika Quéléver, Lauriane L J Rissanen, Matti Simon, Mario Tauber, Christian Tomé, António Wagner, Andrea C Weitz, Lena Volkamer, Rainer Winkler, Paul M Kirkby, Jasper Worsnop, Douglas R Kulmala, Markku Baltensperger, Urs Dommen, Josef El-Haddad, Imad Donahue, Neil M Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title | Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title_full | Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title_fullStr | Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title_full_unstemmed | Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title_short | Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds |
title_sort | photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds |
topic | Other |
url | https://dx.doi.org/10.1021/acs.est.0c02100 http://cds.cern.ch/record/2801425 |
work_keys_str_mv | AT wangmingyi photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT chendexian photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT xiaomao photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT yeqing photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT stolzenburgdominik photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT hofbauervictoria photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT yepenglin photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT vogelalexanderl photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT mauldinroyl photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT amorimantonio photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT baccariniandrea photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT baumgartnerbernhard photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT brilkesophia photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT dadalubna photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT diasantonio photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT duplissyjonathan photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT finkenzellerhenning photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT garmasholga photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT hexucheng photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT hoylechristopherr photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT kimchanghyuk photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT kvashninalexander photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT lehtipalokatrianne photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT fischerlukas photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT molteniugo photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT petajatuukka photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT pospisilovaveronika photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT queleverlaurianelj photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT rissanenmatti photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT simonmario photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT tauberchristian photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT tomeantonio photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT wagnerandreac photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT weitzlena photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT volkamerrainer photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT winklerpaulm photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT kirkbyjasper photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT worsnopdouglasr photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT kulmalamarkku photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT baltenspergerurs photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT dommenjosef photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT elhaddadimad photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds AT donahueneilm photooxidationofaromatichydrocarbonsproduceslowvolatilityorganiccompounds |