Cargando…
Neural Network-Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS Level-1 Trigger System
The CMS experiment will be upgraded to maintain physics sensitivity and exploit the higher luminosity of the High Luminosity LHC. Part of this upgrade will see the first level (Level-1) trigger use charged particle tracks within the full outer silicon tracker volume as an input for the first time an...
Autores principales: | Brown, Christopher Edward, Bundock, Aaron, Komm, Matthias, Loncar, Vladimir, Pierini, Maurizio, Radburn-smith, Benjamin Charles, Shtipliyski, Antoni, Summers, Sioni Paris, Dancu, Julia-suzana, Tapper, Alexander |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012106 http://cds.cern.ch/record/2801638 |
Ejemplares similares
-
Application of FPGAs to Triggering in High Energy Physics
por: Summers, Sioni Paris
Publicado: (2018) -
Track Finding and Neural Network-Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS Level-1 Trigger System
por: Brown, Christopher Edward
Publicado: (2022) -
Kalman Filter track reconstruction on FPGAs for acceleration of the High Level Trigger of the CMS experiment at the HL-LHC
por: Summers, Sioni, et al.
Publicado: (2019) -
hls4ml: deploying deep learning on FPGAs for L1 trigger and Data Acquisition
por: Duarte, Javier, et al.
Publicado: (2019) -
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml
por: Ghielmetti, Nicolò, et al.
Publicado: (2022)