Cargando…
Maximum likelihood reconstruction of water Cherenkov events with deep generative neural networks
Large water Cherenkov detectors have shaped our current knowledge of neutrino physics and nucleon decay, and will continue to do so in the foreseeable future. These highly capable detectors allow for directional and topological, as well as calorimetric information to be extracted from signals on the...
Autores principales: | Jia, Mo, Kumar, Karan, Mackey, Liam S., Putra, Alexander, Vilela, Cristovao, Wilking, Michael J., Xia, Junjie, Yanagisawa, Chiaki, Yang, Karan |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3389/fdata.2022.868333 http://cds.cern.ch/record/2802038 |
Ejemplares similares
-
Maximum Likelihood Reconstruction of Water Cherenkov Events With Deep Generative Neural Networks
por: Jia, Mo, et al.
Publicado: (2022) -
A Novel Algorithm to Reconstruct Events in a Water Cherenkov Detector
por: Jia, Mo, et al.
Publicado: (2022) -
Cherenkov ring search using a maximum likelihood technique
por: Baillon, Paul
Publicado: (1984) -
Measurement of the track reconstruction efficiency at LHCb
por: Aaij, Roel, et al.
Publicado: (2014) -
Topological study of three-jet events in ALICE
por: Pochybova, Sona
Publicado: (2009)