Cargando…
Quantum Machine Learning for $b$-jet identification
Machine Learning algorithms have played an important role in hadronic jet classification problems. The large variety of models applied to Large Hadron Collider data has demonstrated that there is still room for improvement. In this context Quantum Machine Learning is a new and almost unexplored meth...
Autores principales: | Gianelle, Alessio, Koppenburg, Patrick, Lucchesi, Donatella, Nicotra, Davide, Rodrigues, Eduardo, Sestini, Lorenzo, de Vries, Jacco, Zuliani, Davide |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2022)014 http://cds.cern.ch/record/2802679 |
Ejemplares similares
-
Quantum Computing for Data Analysis in High-Energy Physics
por: Delgado, Andrea, et al.
Publicado: (2022) -
Binary classifiers for noisy datasets: a comparative study of existing quantum machine learning frameworks and some new approaches
por: Schetakis, N., et al.
Publicado: (2021) -
Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC
por: Wu, Sau Lan, et al.
Publicado: (2021) -
Quantum key distribution over 100 km of underwater optical fiber assisted by a fast-gated single-photon detector
por: Ribezzo, Domenico, et al.
Publicado: (2023) -
Quantum Machine Learning in High Energy Physics
por: Guan, Wen, et al.
Publicado: (2021)