Cargando…
Machine Learning for Particle Flow Reconstruction at CMS
We provide details on the implementation of a machine-learning based particle flow algorithm for CMS. The standard particle flow algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction that exploits the combined information of multipl...
Autores principales: | Pata, Joosep, Duarte, Javier, Mokhtar, Farouk, Wulff, Eric, Yoo, Jieun, Vlimant, Jean-Roch, Pierini, Maurizio, Girone, Maria |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012100 http://cds.cern.ch/record/2802826 |
Ejemplares similares
-
Progress towards an improved particle flow algorithm at CMS with machine learning
por: Mokhtar, Farouk, et al.
Publicado: (2023) -
Explaining machine-learned particle-flow reconstruction
por: Mokhtar, Farouk, et al.
Publicado: (2021) -
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
por: Pata, Joosep, et al.
Publicado: (2021) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021) -
Particles in flows
por: Bodnár, Tomáš, et al.
Publicado: (2017)