Cargando…
Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities
The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incide...
Autores principales: | Obermair, Christoph, Cartier-Michaud, Thomas, Apollonio, Andrea, Millar, William, Felsberger, Lukas, Fischl, Lorenz, Bovbjerg, Holger Severin, Wollmann, Daniel, Wuensch, Walter, Catalan-Lasheras, Nuria, Boronat, Marçà, Pernkopf, Franz, Burt, Graeme |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevAccelBeams.25.104601 http://cds.cern.ch/record/2803014 |
Ejemplares similares
-
Machine Learning Models for Breakdown Prediction in RF Cavities for Accelerators
por: Obermair, Christoph, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
Ensemble Reservoir Computing for Dynamical Systems: Prediction of Phase-Space Stable Region for Hadron Storage Rings
por: Casanova, Maxime, et al.
Publicado: (2023)