Cargando…
Impact of quantum noise on the training of quantum Generative Adversarial Networks
Current noisy intermediate-scale quantum devices suffer from various sources of intrinsic quantum noise. Overcoming the effects of noise is a major challenge, for which different error mitigation and error correction techniques have been proposed. In this paper, we conduct a first study of the perfo...
Autores principales: | Borras, Kerstin, Chang, Su Yeon, Funcke, Lena, Grossi, Michele, Hartung, Tobias, Jansen, Karl, Kruecker, Dirk, Kühn, Stefan, Rehm, Florian, Tüysüz, Cenk, Vallecorsa, Sofia |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012093 http://cds.cern.ch/record/2803020 |
Ejemplares similares
-
Precise Image Generation on Current Noisy Quantum Computing Devices
por: Rehm, Florian, et al.
Publicado: (2023) -
Quantum Generative Adversarial Networks For Anomaly Detection In High Energy Physics
por: Bermot, Elie, et al.
Publicado: (2023) -
A Quantum Graph Neural Network Approach to Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Performance of Particle Tracking Using a Quantum Graph Neural Network
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Quantum phase detection generalization from marginal quantum neural network models
por: Monaco, Saverio, et al.
Publicado: (2022)