Cargando…
Estimating Elliptic Flow Coefficient in Heavy Ion Collisions using Deep Learning
Machine learning techniques have been employed for the high energy physics community since the early 80s to deal with a broad spectrum of problems. This work explores the prospects of using deep learning techniques to estimate elliptic flow (<math display="inline"><msub><mi&...
Autores principales: | Mallick, Neelkamal, Prasad, Suraj, Mishra, Aditya Nath, Sahoo, Raghunath, Barnaföldi, Gergely Gábor |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.105.114022 http://cds.cern.ch/record/2803022 |
Ejemplares similares
-
Event topology and constituent-quark scaling of elliptic flow in heavy-ion collisions at the Large Hadron Collider using a multiphase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach
por: Mishra, Aditya Nath, et al.
Publicado: (2021) -
Estimation of Impact Parameter and Transverse Spherocity in heavy-ion collisions at the LHC energies using Machine Learning
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Implementation of machine learning techniques to predict impact parameter and transverse spherocity in heavy-ion collisions at the LHC
por: Mishra, Aditya Nath, et al.
Publicado: (2021) -
Study of the jet transport coefficient at the Large Hadron Collider energies using Color String Percolation Model
por: Sahu, Dushmanta, et al.
Publicado: (2021)