Cargando…
Deep learning techniques for energy clustering in the CMS ECAL
The reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring crystals according to the expected topology of a...
Autor principal: | Valsecchi, Davide |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012077 http://cds.cern.ch/record/2803235 |
Ejemplares similares
-
Deep learning techniques for energy clustering in the CMS electromagnetic calorimeter
por: Marzocchi, Badder
Publicado: (2022) -
Application of Deep Learning techniques in the search for BSM Higgs bosons in the $\mu\mu$ final state in CMS
por: Diotalevi, Tommaso
Publicado: (2022) -
ECAL SuperClustering with Machine Learning - Corrected energy performance
por: CMS Collaboration
Publicado: (2022) -
CMS ECAL monitoring and calibration in LHC Run 2
por: Monti, Fabio
Publicado: (2018) -
ECAL SuperClustering with Machine Learning
por: CMS Collaboration
Publicado: (2021)