Cargando…
GNN-based end-to-end reconstruction in the CMS Phase 2 High-Granularity Calorimeter
We present the current stage of research progress towards a one-pass, completely Machine Learning (ML) based imaging calorimeter reconstruction. The model used is based on Graph Neural Networks (GNNs) and directly analyzes the hits in each HGCAL endcap. The ML algorithm is trained to predict cluster...
Autores principales: | Bhattacharya, Saptaparna, Chernyavskaya, Nadezda, Ghosh, Saranya, Gray, Lindsey, Kieseler, Jan, Klijnsma, Thomas, Long, Kenneth, Nawaz, Raheel, Pedro, Kevin, Pierini, Maurizio, Pradhan, Gauri, Qasim, Shah Rukh, Viazlo, Oleksander, Zehetner, Philipp |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012090 http://cds.cern.ch/record/2803236 |
Ejemplares similares
-
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022) -
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2021) -
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
por: Qasim, Shah Rukh
Publicado: (2021) -
End-to-End Calcification Distribution Pattern Recognition for Mammograms: An Interpretable Approach with GNN
por: Yao, Melissa Min-Szu, et al.
Publicado: (2022) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019)