Cargando…

Probing the diffusive behaviour of beam-halo dynamics in circular accelerators

Circular particle accelerators at the energy frontier are based on superconducting magnets that are extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware int...

Descripción completa

Detalles Bibliográficos
Autores principales: Montanari, C.E., Bazzani, A., Giovannozzi, M.
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1140/epjp/s13360-022-03478-w
http://cds.cern.ch/record/2803346
_version_ 1780972784734699520
author Montanari, C.E.
Bazzani, A.
Giovannozzi, M.
author_facet Montanari, C.E.
Bazzani, A.
Giovannozzi, M.
author_sort Montanari, C.E.
collection CERN
description Circular particle accelerators at the energy frontier are based on superconducting magnets that are extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware integrity is put in serious danger, and machine protection becomes essential for reaching the nominal accelerator performance. In this challenging context, the beam halo becomes a potential source of performance limitations and its dynamics needs to be understood in detail to assess whether it could be an issue for the accelerator. In this paper, we discuss in detail a recent framework, based on a diffusive approach, to model beam-halo dynamics. The functional form of the optimal estimate of the perturbative series, as given by Nekhoroshev’s theorem, is used to provide the functional form of the action diffusion coefficient. The goal is to propose an effective model for the beam-halo dynamics and to devise an efficient experimental procedure to obtain an accurate measurement of the diffusion coefficient.
id cern-2803346
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28033462023-06-29T04:22:03Zdoi:10.1140/epjp/s13360-022-03478-whttp://cds.cern.ch/record/2803346engMontanari, C.E.Bazzani, A.Giovannozzi, M.Probing the diffusive behaviour of beam-halo dynamics in circular acceleratorsAccelerators and Storage RingsCircular particle accelerators at the energy frontier are based on superconducting magnets that are extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware integrity is put in serious danger, and machine protection becomes essential for reaching the nominal accelerator performance. In this challenging context, the beam halo becomes a potential source of performance limitations and its dynamics needs to be understood in detail to assess whether it could be an issue for the accelerator. In this paper, we discuss in detail a recent framework, based on a diffusive approach, to model beam-halo dynamics. The functional form of the optimal estimate of the perturbative series, as given by Nekhoroshev’s theorem, is used to provide the functional form of the action diffusion coefficient. The goal is to propose an effective model for the beam-halo dynamics and to devise an efficient experimental procedure to obtain an accurate measurement of the diffusion coefficient.Circular particle accelerators at the energy frontier are based on superconducting magnets that are extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware integrity is put in serious danger, and machine protection becomes essential for reaching the nominal accelerator performance. In this challenging context, the beam halo becomes a potential source of performance limitations and its dynamics needs to be understood in detail to assess whether it could be an issue for the accelerator. In this paper, we discuss in detail a novel framework, based on a diffusive approach, to model beam-halo dynamics. The functional form of the optimal estimate of the perturbative series, as given by Nekhoroshev's theorem, is used to provide the functional form of the action diffusion coefficient. The goal is to propose an effective model for the beam-halo dynamics and to devise an efficient experimental procedure to obtain an accurate measurement of the diffusion coefficient.arXiv:2202.10050oai:cds.cern.ch:28033462022-02-21
spellingShingle Accelerators and Storage Rings
Montanari, C.E.
Bazzani, A.
Giovannozzi, M.
Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title_full Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title_fullStr Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title_full_unstemmed Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title_short Probing the diffusive behaviour of beam-halo dynamics in circular accelerators
title_sort probing the diffusive behaviour of beam-halo dynamics in circular accelerators
topic Accelerators and Storage Rings
url https://dx.doi.org/10.1140/epjp/s13360-022-03478-w
http://cds.cern.ch/record/2803346
work_keys_str_mv AT montanarice probingthediffusivebehaviourofbeamhalodynamicsincircularaccelerators
AT bazzania probingthediffusivebehaviourofbeamhalodynamicsincircularaccelerators
AT giovannozzim probingthediffusivebehaviourofbeamhalodynamicsincircularaccelerators