Cargando…
Universal Feature of Charged Entanglement Entropy
Rényi entropies, <math display="inline"><msub><mi>S</mi><mi>n</mi></msub></math>, admit a natural generalization in the presence of global symmetries. These “charged Rényi entropies” are functions of the chemical potential <math display=&q...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevLett.129.021601 http://cds.cern.ch/record/2803444 |
_version_ | 1780972792725897216 |
---|---|
author | Bueno, Pablo Cano, Pablo A. Murcia, Ángel Rivadulla Sánchez, Alberto |
author_facet | Bueno, Pablo Cano, Pablo A. Murcia, Ángel Rivadulla Sánchez, Alberto |
author_sort | Bueno, Pablo |
collection | CERN |
description | Rényi entropies, <math display="inline"><msub><mi>S</mi><mi>n</mi></msub></math>, admit a natural generalization in the presence of global symmetries. These “charged Rényi entropies” are functions of the chemical potential <math display="inline"><mi>μ</mi></math> conjugate to the charge contained in the entangling region and reduce to the usual notions as <math display="inline"><mrow><mi>μ</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>. For <math display="inline"><mi>n</mi><mo>=</mo><mn>1</mn></math>, this provides a notion of charged entanglement entropy. In this Letter, we prove that for a general <math display="inline"><mi>d</mi><mo stretchy="false">(</mo><mo>≥</mo><mn>3</mn><mo stretchy="false">)</mo></math>-dimensional conformal field theory, the leading correction to the uncharged entanglement entropy across a spherical entangling surface is quadratic in the chemical potential, positive definite, and universally controlled (up to fixed <math display="inline"><mi>d</mi></math>-dependent constants) by the coefficients <math display="inline"><msub><mi>C</mi><mi>J</mi></msub></math> and <math display="inline"><msub><mi>a</mi><mn>2</mn></msub></math>. These fully characterize, for a given theory, the current correlators <math display="inline"><mrow><mo stretchy="false">⟨</mo><mrow><mi>J</mi><mi>J</mi></mrow><mo stretchy="false">⟩</mo></mrow></math> and <math display="inline"><mrow><mo stretchy="false">⟨</mo><mrow><mi>T</mi><mi>J</mi><mi>J</mi></mrow><mo stretchy="false">⟩</mo></mrow></math>, as well as the energy flux measured at infinity produced by the insertion of the current operator. Our result is motivated by analytic holographic calculations for a special class of higher-curvature gravities coupled to a (<math display="inline"><mrow><mi>d</mi><mo>-</mo><mn>2</mn></mrow></math>) form in general dimensions as well as for free fields in <math display="inline"><mi>d</mi><mo>=</mo><mn>4</mn></math>. A proof for general theories and dimensions follows from previously known universal identities involving the magnetic response of twist operators introduced in A. Belin et al. [J. High Energy Phys. 12 (2013) 059.] and basic thermodynamic relations. |
id | cern-2803444 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28034442023-10-04T07:34:06Zdoi:10.1103/PhysRevLett.129.021601http://cds.cern.ch/record/2803444engBueno, PabloCano, Pablo A.Murcia, ÁngelRivadulla Sánchez, AlbertoUniversal Feature of Charged Entanglement Entropygr-qcGeneral Relativity and Cosmologyhep-thParticle Physics - TheoryRényi entropies, <math display="inline"><msub><mi>S</mi><mi>n</mi></msub></math>, admit a natural generalization in the presence of global symmetries. These “charged Rényi entropies” are functions of the chemical potential <math display="inline"><mi>μ</mi></math> conjugate to the charge contained in the entangling region and reduce to the usual notions as <math display="inline"><mrow><mi>μ</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>. For <math display="inline"><mi>n</mi><mo>=</mo><mn>1</mn></math>, this provides a notion of charged entanglement entropy. In this Letter, we prove that for a general <math display="inline"><mi>d</mi><mo stretchy="false">(</mo><mo>≥</mo><mn>3</mn><mo stretchy="false">)</mo></math>-dimensional conformal field theory, the leading correction to the uncharged entanglement entropy across a spherical entangling surface is quadratic in the chemical potential, positive definite, and universally controlled (up to fixed <math display="inline"><mi>d</mi></math>-dependent constants) by the coefficients <math display="inline"><msub><mi>C</mi><mi>J</mi></msub></math> and <math display="inline"><msub><mi>a</mi><mn>2</mn></msub></math>. These fully characterize, for a given theory, the current correlators <math display="inline"><mrow><mo stretchy="false">⟨</mo><mrow><mi>J</mi><mi>J</mi></mrow><mo stretchy="false">⟩</mo></mrow></math> and <math display="inline"><mrow><mo stretchy="false">⟨</mo><mrow><mi>T</mi><mi>J</mi><mi>J</mi></mrow><mo stretchy="false">⟩</mo></mrow></math>, as well as the energy flux measured at infinity produced by the insertion of the current operator. Our result is motivated by analytic holographic calculations for a special class of higher-curvature gravities coupled to a (<math display="inline"><mrow><mi>d</mi><mo>-</mo><mn>2</mn></mrow></math>) form in general dimensions as well as for free fields in <math display="inline"><mi>d</mi><mo>=</mo><mn>4</mn></math>. A proof for general theories and dimensions follows from previously known universal identities involving the magnetic response of twist operators introduced in A. Belin et al. [J. High Energy Phys. 12 (2013) 059.] and basic thermodynamic relations.Rényi entropies, $S_n$, admit a natural generalization in the presence of global symmetries. These "charged Rényi entropies" are functions of the chemical potential $\mu$ conjugate to the charge contained in the entangling region and reduce to the usual notions as $\mu\rightarrow 0$. For $n=1$, this provides a notion of charged entanglement entropy. In this letter we prove that for a general $d (\geq 3)$-dimensional CFT, the leading correction to the uncharged entanglement entropy across a spherical entangling surface is quadratic in the chemical potential, positive definite, and universally controlled (up to fixed $d$-dependent constants) by the coefficients $C_J$ and $a_2$. These fully characterize, for a given theory, the current correlators $\langle JJ\rangle $ and $\langle TJJ \rangle$, as well as the energy flux measured at infinity produced by the insertion of the current operator. Our result is motivated by analytic holographic calculations for a special class of higher-curvature gravities coupled to a $(d-2)$-form in general dimensions as well as for free-fields in $d=4$. A proof for general theories and dimensions follows from previously known universal identities involving the magnetic response of twist operators introduced in arXiv:1310.4180 and basic thermodynamic relations.arXiv:2203.04325IFT-UAM/CSIC-22-18CERN-TH-2022-033oai:cds.cern.ch:28034442022-03-08 |
spellingShingle | gr-qc General Relativity and Cosmology hep-th Particle Physics - Theory Bueno, Pablo Cano, Pablo A. Murcia, Ángel Rivadulla Sánchez, Alberto Universal Feature of Charged Entanglement Entropy |
title | Universal Feature of Charged Entanglement Entropy |
title_full | Universal Feature of Charged Entanglement Entropy |
title_fullStr | Universal Feature of Charged Entanglement Entropy |
title_full_unstemmed | Universal Feature of Charged Entanglement Entropy |
title_short | Universal Feature of Charged Entanglement Entropy |
title_sort | universal feature of charged entanglement entropy |
topic | gr-qc General Relativity and Cosmology hep-th Particle Physics - Theory |
url | https://dx.doi.org/10.1103/PhysRevLett.129.021601 http://cds.cern.ch/record/2803444 |
work_keys_str_mv | AT buenopablo universalfeatureofchargedentanglemententropy AT canopabloa universalfeatureofchargedentanglemententropy AT murciaangel universalfeatureofchargedentanglemententropy AT rivadullasanchezalberto universalfeatureofchargedentanglemententropy |