Cargando…
Quantum neural networks force fields generation
Accurate molecular force fields are of paramount importance for the efficient implementation of molecular dynamics techniques at large scales. In the last decade, machine learning (ML) methods have demonstrated impressive performances in predicting accurate values for energy and forces when trained...
Autores principales: | Kiss, Oriel, Tacchino, Francesco, Vallecorsa, Sofia, Tavernelli, Ivano |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/ac7d3c http://cds.cern.ch/record/2803698 |
Ejemplares similares
-
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Unravelling physics beyond the standard model with classical and quantum anomaly detection
por: Schuhmacher, Julian, et al.
Publicado: (2023) -
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
por: Chang, Su Yeon, et al.
Publicado: (2021) -
Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
por: Chang, Su Yeon, et al.
Publicado: (2021) -
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021)