Cargando…
Development and commissioning of a machine learning algorithm for real time reconstruction of electromagnetic showers with a scintillating fibres tracker
This thesis approaches the problem of reconstructing electromagnetic showers in real time using a tracking detector interleaved with other layers serving as absorbing material. It finds immediate application in experiments such as SHiP and SND@LHC, which use calorimeters made of emulsion bricks inte...
Autor principal: | de Bryas, Paul |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2803846 |
Ejemplares similares
-
Implementation of a Machine Learning Regression Algorithm for Energy Reconstruction of Neutrino-induced Particle Showers using a Scintillating Fibres Tracker at the SND@LHC
por: Mitra, Shania
Publicado: (2022) -
LHCb - Commissioning of the LHCb Scintillating Fibre Tracker
por: Wang, Chishuai
Publicado: (2022) -
Real-time reconstruction of tracks in the Scintillating Fibre Tracker of the LHCb Upgrade
por: Di Luca, Andrea
Publicado: (2018) -
Commissioning of the Front-End Electronics of the LHCb Scintillating Fibre Tracker
por: Berninghoff, Daniel Alexander
Publicado: (2022) -
Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb
por: Aiola, Salvatore, et al.
Publicado: (2020)