Cargando…
A machine learning algorithm for energy reconstruction and binary classification of elastic and inelastic neutrino scattering events at the SND@LHC
This Bachelor Research Thesis (BTR) aims to improve the accuracy of energy reconstruction for particle showers within an energy range of 200-400 GeV passing through the Scintillating Fibre (SciFi) planes of the prospective Scattering and Neutrino Detector at the Large Hadron Collider (SND@LHC). To t...
Autor principal: | Cobussen, Joyce |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2803850 |
Ejemplares similares
-
SND@LHC - Scattering and Neutrino Detector at the LHC
por: Ahdida, C, et al.
Publicado: (2021) -
SND@LHC: The Scattering and Neutrino Detector at the LHC
por: Acampora, G., et al.
Publicado: (2022) -
SND@LHC: The Scattering and Neutrino Detector at the LHC
por: Acampora, G., et al.
Publicado: (2022) -
The detector SND@LHC, or Scattering and Neutrino Detector at the LHC
por: Brice, Maximilien
Publicado: (2022) -
Status of SND@LHC (Scattering and Neutrino Detector at the LHC)
por: Van Herwijnen, Eric
Publicado: (2022)