Cargando…
Implementation of a Machine Learning Regression Algorithm for Energy Reconstruction of Neutrino-induced Particle Showers using a Scintillating Fibres Tracker at the SND@LHC
SHiP and SND@LHC are two burgeoning experiments, as part of CERN, designed to study novel neutrino and BSM physics. Machine Learning (ML) algorithms need to be developed to extract hit information detected by SciFi planes and reconstruct energies of particle showers generated within the Sampling Cal...
Autor principal: | Mitra, Shania |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2803851 |
Ejemplares similares
-
Hadronic shower reconstruction for the SND@LHC experiment
por: Katsarov, Stefan
Publicado: (2023) -
Development and commissioning of a machine learning algorithm for real time reconstruction of electromagnetic showers with a scintillating fibres tracker
por: de Bryas, Paul
Publicado: (2022) -
Study of neutrino interactions at SND@LHC
por: Alicante, Fabio
Publicado: (2023) -
SND@LHC - Scattering and Neutrino Detector at the LHC
por: Ahdida, C, et al.
Publicado: (2021) -
SND@LHC: The Scattering and Neutrino Detector at the LHC
por: Acampora, G., et al.
Publicado: (2022)