Cargando…

Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements

Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lerendegui-Marco, J, Babiano-Suárez, V, Balibrea-Correa, J, Caballero, L, Calvo, D, Domingo-Pardo, C, Ladarescu, I, Real, D, Calviño, F, Casanovas, A, Tarifeño-Saldivia, A, Alcayne, V, Guerrero, C, Millán-Callado, M A, Rodríguez-González, T, Barbagallo, M, Chiera, N M, Dressler, R, Heinitz, S, Maugeri, E A, Schumann, D, Köster, U
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/202226010002
http://cds.cern.ch/record/2803907
_version_ 1780972821359362048
author Lerendegui-Marco, J
Babiano-Suárez, V
Balibrea-Correa, J
Babiano-Suárez, V
Caballero, L
Calvo, D
Domingo-Pardo, C
Ladarescu, I
Real, D
Calviño, F
Casanovas, A
Tarifeño-Saldivia, A
Alcayne, V
Guerrero, C
Millán-Callado, M A
Rodríguez-González, T
Barbagallo, M
Chiera, N M
Dressler, R
Heinitz, S
Maugeri, E A
Schumann, D
Köster, U
author_facet Lerendegui-Marco, J
Babiano-Suárez, V
Balibrea-Correa, J
Babiano-Suárez, V
Caballero, L
Calvo, D
Domingo-Pardo, C
Ladarescu, I
Real, D
Calviño, F
Casanovas, A
Tarifeño-Saldivia, A
Alcayne, V
Guerrero, C
Millán-Callado, M A
Rodríguez-González, T
Barbagallo, M
Chiera, N M
Dressler, R
Heinitz, S
Maugeri, E A
Schumann, D
Köster, U
author_sort Lerendegui-Marco, J
collection CERN
description Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovative detection system which exploits the Compton imaging technique with the aim of obtaining information about the incoming direction of the detected $\gamma$-rays. The imaging capability allows one to reject a large fraction of the dominant $\gamma$-ray background, hence enhancing the (n,$\gamma$) detection sensitivity.This work summarizes the main results of the first experimental proof-of-concept of the background rejection with i-TED carried out at CERN n_TOF using an early i-TED demonstrator. Two state-of-the-art C$_{6}$D$_{6}$ detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ~3 higher detection sensitivity than C6D6 detectors in the ~10 keV neutron-energy range of astrophysical interest. This works also introduces the perspectives of further enhancement in performance attainable with the final i-TED array and new analysis methodologies based on Machine-Learning techniques. The latter provide higher (n,$\gamma$) detection efficiency and similar enhancement in the sensitivity than the analytical method based on the Compton scattering law. Finally, we present our proposal to use this detection system for the first time on key astrophysical (n,$\gamma$) measurements, in particular on the s-process branching-point $^{79}$Se, which is especially well suited to constrain the thermal conditions of Red Giant and Massive Stars.
id cern-2803907
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28039072022-03-16T13:48:53Zdoi:10.1051/epjconf/202226010002http://cds.cern.ch/record/2803907engLerendegui-Marco, JBabiano-Suárez, VBalibrea-Correa, JBabiano-Suárez, VCaballero, LCalvo, DDomingo-Pardo, CLadarescu, IReal, DCalviño, FCasanovas, ATarifeño-Saldivia, AAlcayne, VGuerrero, CMillán-Callado, M ARodríguez-González, TBarbagallo, MChiera, N MDressler, RHeinitz, SMaugeri, E ASchumann, DKöster, UCompton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurementsAstrophysics and AstronomyNeutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovative detection system which exploits the Compton imaging technique with the aim of obtaining information about the incoming direction of the detected $\gamma$-rays. The imaging capability allows one to reject a large fraction of the dominant $\gamma$-ray background, hence enhancing the (n,$\gamma$) detection sensitivity.This work summarizes the main results of the first experimental proof-of-concept of the background rejection with i-TED carried out at CERN n_TOF using an early i-TED demonstrator. Two state-of-the-art C$_{6}$D$_{6}$ detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ~3 higher detection sensitivity than C6D6 detectors in the ~10 keV neutron-energy range of astrophysical interest. This works also introduces the perspectives of further enhancement in performance attainable with the final i-TED array and new analysis methodologies based on Machine-Learning techniques. The latter provide higher (n,$\gamma$) detection efficiency and similar enhancement in the sensitivity than the analytical method based on the Compton scattering law. Finally, we present our proposal to use this detection system for the first time on key astrophysical (n,$\gamma$) measurements, in particular on the s-process branching-point $^{79}$Se, which is especially well suited to constrain the thermal conditions of Red Giant and Massive Stars.oai:cds.cern.ch:28039072022
spellingShingle Astrophysics and Astronomy
Lerendegui-Marco, J
Babiano-Suárez, V
Balibrea-Correa, J
Babiano-Suárez, V
Caballero, L
Calvo, D
Domingo-Pardo, C
Ladarescu, I
Real, D
Calviño, F
Casanovas, A
Tarifeño-Saldivia, A
Alcayne, V
Guerrero, C
Millán-Callado, M A
Rodríguez-González, T
Barbagallo, M
Chiera, N M
Dressler, R
Heinitz, S
Maugeri, E A
Schumann, D
Köster, U
Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title_full Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title_fullStr Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title_full_unstemmed Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title_short Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
title_sort compton imaging and machine-learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
topic Astrophysics and Astronomy
url https://dx.doi.org/10.1051/epjconf/202226010002
http://cds.cern.ch/record/2803907
work_keys_str_mv AT lerendeguimarcoj comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT babianosuarezv comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT balibreacorreaj comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT babianosuarezv comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT caballerol comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT calvod comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT domingopardoc comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT ladarescui comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT reald comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT calvinof comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT casanovasa comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT tarifenosaldiviaa comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT alcaynev comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT guerreroc comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT millancalladoma comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT rodriguezgonzalezt comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT barbagallom comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT chieranm comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT dresslerr comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT heinitzs comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT maugeriea comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT schumannd comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements
AT kosteru comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements