Cargando…
Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements
Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202226010002 http://cds.cern.ch/record/2803907 |
_version_ | 1780972821359362048 |
---|---|
author | Lerendegui-Marco, J Babiano-Suárez, V Balibrea-Correa, J Babiano-Suárez, V Caballero, L Calvo, D Domingo-Pardo, C Ladarescu, I Real, D Calviño, F Casanovas, A Tarifeño-Saldivia, A Alcayne, V Guerrero, C Millán-Callado, M A Rodríguez-González, T Barbagallo, M Chiera, N M Dressler, R Heinitz, S Maugeri, E A Schumann, D Köster, U |
author_facet | Lerendegui-Marco, J Babiano-Suárez, V Balibrea-Correa, J Babiano-Suárez, V Caballero, L Calvo, D Domingo-Pardo, C Ladarescu, I Real, D Calviño, F Casanovas, A Tarifeño-Saldivia, A Alcayne, V Guerrero, C Millán-Callado, M A Rodríguez-González, T Barbagallo, M Chiera, N M Dressler, R Heinitz, S Maugeri, E A Schumann, D Köster, U |
author_sort | Lerendegui-Marco, J |
collection | CERN |
description | Neutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovative detection system which exploits the Compton imaging technique with the aim of obtaining information about the incoming direction of the detected $\gamma$-rays. The imaging capability allows one to reject a large fraction of the dominant $\gamma$-ray background, hence enhancing the (n,$\gamma$) detection sensitivity.This work summarizes the main results of the first experimental proof-of-concept of the background rejection with i-TED carried out at CERN n_TOF using an early i-TED demonstrator. Two state-of-the-art C$_{6}$D$_{6}$ detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ~3 higher detection sensitivity than C6D6 detectors in the ~10 keV neutron-energy range of astrophysical interest. This works also introduces the perspectives of further enhancement in performance attainable with the final i-TED array and new analysis methodologies based on Machine-Learning techniques. The latter provide higher (n,$\gamma$) detection efficiency and similar enhancement in the sensitivity than the analytical method based on the Compton scattering law. Finally, we present our proposal to use this detection system for the first time on key astrophysical (n,$\gamma$) measurements, in particular on the s-process branching-point $^{79}$Se, which is especially well suited to constrain the thermal conditions of Red Giant and Massive Stars. |
id | cern-2803907 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28039072022-03-16T13:48:53Zdoi:10.1051/epjconf/202226010002http://cds.cern.ch/record/2803907engLerendegui-Marco, JBabiano-Suárez, VBalibrea-Correa, JBabiano-Suárez, VCaballero, LCalvo, DDomingo-Pardo, CLadarescu, IReal, DCalviño, FCasanovas, ATarifeño-Saldivia, AAlcayne, VGuerrero, CMillán-Callado, M ARodríguez-González, TBarbagallo, MChiera, N MDressler, RHeinitz, SMaugeri, E ASchumann, DKöster, UCompton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurementsAstrophysics and AstronomyNeutron capture cross-section measurements are fundamental in the study of astrophysical phenomena, such as the slow neutron capture (s-) process of nucleosynthesis operating in red-giant stars. To enhance the sensitivity of such measurements we have developed the i-TED detector. i-TED is an innovative detection system which exploits the Compton imaging technique with the aim of obtaining information about the incoming direction of the detected $\gamma$-rays. The imaging capability allows one to reject a large fraction of the dominant $\gamma$-ray background, hence enhancing the (n,$\gamma$) detection sensitivity.This work summarizes the main results of the first experimental proof-of-concept of the background rejection with i-TED carried out at CERN n_TOF using an early i-TED demonstrator. Two state-of-the-art C$_{6}$D$_{6}$ detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ~3 higher detection sensitivity than C6D6 detectors in the ~10 keV neutron-energy range of astrophysical interest. This works also introduces the perspectives of further enhancement in performance attainable with the final i-TED array and new analysis methodologies based on Machine-Learning techniques. The latter provide higher (n,$\gamma$) detection efficiency and similar enhancement in the sensitivity than the analytical method based on the Compton scattering law. Finally, we present our proposal to use this detection system for the first time on key astrophysical (n,$\gamma$) measurements, in particular on the s-process branching-point $^{79}$Se, which is especially well suited to constrain the thermal conditions of Red Giant and Massive Stars.oai:cds.cern.ch:28039072022 |
spellingShingle | Astrophysics and Astronomy Lerendegui-Marco, J Babiano-Suárez, V Balibrea-Correa, J Babiano-Suárez, V Caballero, L Calvo, D Domingo-Pardo, C Ladarescu, I Real, D Calviño, F Casanovas, A Tarifeño-Saldivia, A Alcayne, V Guerrero, C Millán-Callado, M A Rodríguez-González, T Barbagallo, M Chiera, N M Dressler, R Heinitz, S Maugeri, E A Schumann, D Köster, U Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title | Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title_full | Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title_fullStr | Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title_full_unstemmed | Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title_short | Compton Imaging and Machine-Learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
title_sort | compton imaging and machine-learning techniques for an enhanced sensitivity in key stellar (n,$\gamma$) measurements |
topic | Astrophysics and Astronomy |
url | https://dx.doi.org/10.1051/epjconf/202226010002 http://cds.cern.ch/record/2803907 |
work_keys_str_mv | AT lerendeguimarcoj comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT babianosuarezv comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT balibreacorreaj comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT babianosuarezv comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT caballerol comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT calvod comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT domingopardoc comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT ladarescui comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT reald comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT calvinof comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT casanovasa comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT tarifenosaldiviaa comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT alcaynev comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT guerreroc comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT millancalladoma comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT rodriguezgonzalezt comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT barbagallom comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT chieranm comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT dresslerr comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT heinitzs comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT maugeriea comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT schumannd comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements AT kosteru comptonimagingandmachinelearningtechniquesforanenhancedsensitivityinkeystellarngammameasurements |