Cargando…

The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD

We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadro...

Descripción completa

Detalles Bibliográficos
Autores principales: Cè, Marco, Gérardin, Antoine, von Hippel, Georg, Meyer, Harvey B., Miura, Kohtaroh, Ottnad, Konstantin, Risch, Andreas, San José, Teseo, Wilhelm, Jonas, Wittig, Hartmut
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP08(2022)220
http://cds.cern.ch/record/2804233
_version_ 1780972845717782528
author Cè, Marco
Gérardin, Antoine
von Hippel, Georg
Meyer, Harvey B.
Miura, Kohtaroh
Ottnad, Konstantin
Risch, Andreas
San José, Teseo
Wilhelm, Jonas
Wittig, Hartmut
author_facet Cè, Marco
Gérardin, Antoine
von Hippel, Georg
Meyer, Harvey B.
Miura, Kohtaroh
Ottnad, Konstantin
Risch, Andreas
San José, Teseo
Wilhelm, Jonas
Wittig, Hartmut
author_sort Cè, Marco
collection CERN
description We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions $ \overline{\varPi} ^{γγ}$ and $ \overline{\varPi} ^{γZ}$ for Euclidean squared momenta Q$^{2}$ ≤ 7 GeV$^{2}$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function $ \overline{\varPi} ^{08}$ that enters the running of sin$^{2}$θ$_{W}$. Our results for $ \overline{\varPi} ^{γγ}$, $ \overline{\varPi} ^{γZ}$ and $ \overline{\varPi} ^{08}$ are presented in terms of rational functions for continuous values of Q$^{2}$ below 7 GeV$^{2}$. We observe a tension of up to 3.5 standard deviation between our lattice results for $ \Delta {\alpha}_{\mathrm{had}}^{(5)} $(−Q$^{2}$) and estimates based on the R-ratio for space-like momenta in the range 3–7 GeV$^{2}$. The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields $ \Delta {\alpha}_{\mathrm{had}}^{(5)}\left({M}_Z^2\right) $ = 0.02773(15) and agrees with results based on the R-ratio within the quoted uncertainties.
id cern-2804233
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28042332023-10-26T05:09:04Zdoi:10.1007/JHEP08(2022)220http://cds.cern.ch/record/2804233engCè, MarcoGérardin, Antoinevon Hippel, GeorgMeyer, Harvey B.Miura, KohtarohOttnad, KonstantinRisch, AndreasSan José, TeseoWilhelm, JonasWittig, HartmutThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDhep-phParticle Physics - Phenomenologyhep-latParticle Physics - LatticeWe compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions $ \overline{\varPi} ^{γγ}$ and $ \overline{\varPi} ^{γZ}$ for Euclidean squared momenta Q$^{2}$ ≤ 7 GeV$^{2}$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function $ \overline{\varPi} ^{08}$ that enters the running of sin$^{2}$θ$_{W}$. Our results for $ \overline{\varPi} ^{γγ}$, $ \overline{\varPi} ^{γZ}$ and $ \overline{\varPi} ^{08}$ are presented in terms of rational functions for continuous values of Q$^{2}$ below 7 GeV$^{2}$. We observe a tension of up to 3.5 standard deviation between our lattice results for $ \Delta {\alpha}_{\mathrm{had}}^{(5)} $(−Q$^{2}$) and estimates based on the R-ratio for space-like momenta in the range 3–7 GeV$^{2}$. The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields $ \Delta {\alpha}_{\mathrm{had}}^{(5)}\left({M}_Z^2\right) $ = 0.02773(15) and agrees with results based on the R-ratio within the quoted uncertainties.We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar{\Pi}^{\gamma\gamma}$ and $\bar{\Pi}^{\gamma Z}$ for Euclidean squared momenta $Q^2\leq 7\,\mathrm{GeV}^2$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the $\mathrm{SU}(3)$-flavor-suppressed HVP function $\bar{\Pi}^{08}$ that enters the running of $\sin^2\theta_{\mathrm{W}}$. Our results for $\bar{\Pi}^{\gamma\gamma}$, $\bar{\Pi}^{\gamma Z}$ and $\bar{\Pi}^{08}$ are presented in terms of rational functions for continuous values of $Q^2$ below $7 \,\mathrm{GeV}^2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $\Delta\alpha^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for space-like momenta in the range $3$--$7\,\mathrm{GeV}^2$. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $\Delta\alpha^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$ and agrees with results based on the $R$-ratio within the quoted uncertainties.arXiv:2203.08676MITP-22-019CERN-TH-2022-035DESY-22-050oai:cds.cern.ch:28042332022-03-16
spellingShingle hep-ph
Particle Physics - Phenomenology
hep-lat
Particle Physics - Lattice
Cè, Marco
Gérardin, Antoine
von Hippel, Georg
Meyer, Harvey B.
Miura, Kohtaroh
Ottnad, Konstantin
Risch, Andreas
San José, Teseo
Wilhelm, Jonas
Wittig, Hartmut
The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title_full The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title_fullStr The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title_full_unstemmed The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title_short The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
title_sort hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice qcd
topic hep-ph
Particle Physics - Phenomenology
hep-lat
Particle Physics - Lattice
url https://dx.doi.org/10.1007/JHEP08(2022)220
http://cds.cern.ch/record/2804233
work_keys_str_mv AT cemarco thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT gerardinantoine thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT vonhippelgeorg thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT meyerharveyb thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT miurakohtaroh thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT ottnadkonstantin thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT rischandreas thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT sanjoseteseo thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT wilhelmjonas thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT wittighartmut thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT cemarco hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT gerardinantoine hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT vonhippelgeorg hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT meyerharveyb hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT miurakohtaroh hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT ottnadkonstantin hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT rischandreas hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT sanjoseteseo hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT wilhelmjonas hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd
AT wittighartmut hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd