Cargando…
The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadro...
Autores principales: | , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2022)220 http://cds.cern.ch/record/2804233 |
_version_ | 1780972845717782528 |
---|---|
author | Cè, Marco Gérardin, Antoine von Hippel, Georg Meyer, Harvey B. Miura, Kohtaroh Ottnad, Konstantin Risch, Andreas San José, Teseo Wilhelm, Jonas Wittig, Hartmut |
author_facet | Cè, Marco Gérardin, Antoine von Hippel, Georg Meyer, Harvey B. Miura, Kohtaroh Ottnad, Konstantin Risch, Andreas San José, Teseo Wilhelm, Jonas Wittig, Hartmut |
author_sort | Cè, Marco |
collection | CERN |
description | We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions $ \overline{\varPi} ^{γγ}$ and $ \overline{\varPi} ^{γZ}$ for Euclidean squared momenta Q$^{2}$ ≤ 7 GeV$^{2}$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function $ \overline{\varPi} ^{08}$ that enters the running of sin$^{2}$θ$_{W}$. Our results for $ \overline{\varPi} ^{γγ}$, $ \overline{\varPi} ^{γZ}$ and $ \overline{\varPi} ^{08}$ are presented in terms of rational functions for continuous values of Q$^{2}$ below 7 GeV$^{2}$. We observe a tension of up to 3.5 standard deviation between our lattice results for $ \Delta {\alpha}_{\mathrm{had}}^{(5)} $(−Q$^{2}$) and estimates based on the R-ratio for space-like momenta in the range 3–7 GeV$^{2}$. The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields $ \Delta {\alpha}_{\mathrm{had}}^{(5)}\left({M}_Z^2\right) $ = 0.02773(15) and agrees with results based on the R-ratio within the quoted uncertainties. |
id | cern-2804233 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28042332023-10-26T05:09:04Zdoi:10.1007/JHEP08(2022)220http://cds.cern.ch/record/2804233engCè, MarcoGérardin, Antoinevon Hippel, GeorgMeyer, Harvey B.Miura, KohtarohOttnad, KonstantinRisch, AndreasSan José, TeseoWilhelm, JonasWittig, HartmutThe hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCDhep-phParticle Physics - Phenomenologyhep-latParticle Physics - LatticeWe compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N$_{f}$ = 2 + 1 flavors of $ \mathcal{O} $(a) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions $ \overline{\varPi} ^{γγ}$ and $ \overline{\varPi} ^{γZ}$ for Euclidean squared momenta Q$^{2}$ ≤ 7 GeV$^{2}$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function $ \overline{\varPi} ^{08}$ that enters the running of sin$^{2}$θ$_{W}$. Our results for $ \overline{\varPi} ^{γγ}$, $ \overline{\varPi} ^{γZ}$ and $ \overline{\varPi} ^{08}$ are presented in terms of rational functions for continuous values of Q$^{2}$ below 7 GeV$^{2}$. We observe a tension of up to 3.5 standard deviation between our lattice results for $ \Delta {\alpha}_{\mathrm{had}}^{(5)} $(−Q$^{2}$) and estimates based on the R-ratio for space-like momenta in the range 3–7 GeV$^{2}$. The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields $ \Delta {\alpha}_{\mathrm{had}}^{(5)}\left({M}_Z^2\right) $ = 0.02773(15) and agrees with results based on the R-ratio within the quoted uncertainties.We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar{\Pi}^{\gamma\gamma}$ and $\bar{\Pi}^{\gamma Z}$ for Euclidean squared momenta $Q^2\leq 7\,\mathrm{GeV}^2$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the $\mathrm{SU}(3)$-flavor-suppressed HVP function $\bar{\Pi}^{08}$ that enters the running of $\sin^2\theta_{\mathrm{W}}$. Our results for $\bar{\Pi}^{\gamma\gamma}$, $\bar{\Pi}^{\gamma Z}$ and $\bar{\Pi}^{08}$ are presented in terms of rational functions for continuous values of $Q^2$ below $7 \,\mathrm{GeV}^2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $\Delta\alpha^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for space-like momenta in the range $3$--$7\,\mathrm{GeV}^2$. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $\Delta\alpha^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$ and agrees with results based on the $R$-ratio within the quoted uncertainties.arXiv:2203.08676MITP-22-019CERN-TH-2022-035DESY-22-050oai:cds.cern.ch:28042332022-03-16 |
spellingShingle | hep-ph Particle Physics - Phenomenology hep-lat Particle Physics - Lattice Cè, Marco Gérardin, Antoine von Hippel, Georg Meyer, Harvey B. Miura, Kohtaroh Ottnad, Konstantin Risch, Andreas San José, Teseo Wilhelm, Jonas Wittig, Hartmut The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title | The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title_full | The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title_fullStr | The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title_full_unstemmed | The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title_short | The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD |
title_sort | hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice qcd |
topic | hep-ph Particle Physics - Phenomenology hep-lat Particle Physics - Lattice |
url | https://dx.doi.org/10.1007/JHEP08(2022)220 http://cds.cern.ch/record/2804233 |
work_keys_str_mv | AT cemarco thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT gerardinantoine thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT vonhippelgeorg thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT meyerharveyb thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT miurakohtaroh thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT ottnadkonstantin thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT rischandreas thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT sanjoseteseo thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT wilhelmjonas thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT wittighartmut thehadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT cemarco hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT gerardinantoine hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT vonhippelgeorg hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT meyerharveyb hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT miurakohtaroh hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT ottnadkonstantin hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT rischandreas hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT sanjoseteseo hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT wilhelmjonas hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd AT wittighartmut hadronicrunningoftheelectromagneticcouplingandtheelectroweakmixinganglefromlatticeqcd |