Cargando…

Collimation Strategies for Secondary Beams in FCC-hh Ion-Ion Operation

The target peak luminosity of the CERN FCC-hh during Pb-Pb collisions is more than a factor of 50 greater than that achieved by the LHC in 2018. As a result, the intensity of secondary beams produced in collisions at the interaction points will be significantly higher than previously experienced. Wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunt, James, Bruce, Roderik, Carra, Federico, Cerutti, Francesco, Guardia-Valenzuela, Jorge, Molson, James
Lenguaje:eng
Publicado: JACoW 2021
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2021-WEPAB025
http://cds.cern.ch/record/2804333
Descripción
Sumario:The target peak luminosity of the CERN FCC-hh during Pb-Pb collisions is more than a factor of 50 greater than that achieved by the LHC in 2018. As a result, the intensity of secondary beams produced in collisions at the interaction points will be significantly higher than previously experienced. With up to 72 kW deposited in a localised region by a single secondary beam type, namely the one originated by Bound Free Pair Production (BFPP), it is essential to develop strategies to safely intercept these beams, including the ones from ElectroMagnetic Dissociation (EMD), in order to ensure successful FCC-hh Pb-Pb operation. A series of beam tracking and energy deposition simulations were performed to determine the optimal solution for handling the impact of such beams. In this contribution the most advanced results are presented, with a discussion of different options.