Cargando…
MAD-X for Future Accelerators
The feasibility and performance of the future accelerators must, to a large extent, be predicted by simulation codes. This implies that simulation codes need to include effects that previously played a minor role. For example, in large electron machines like the FCC-ee the large energy variation alo...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-WEPAB028 http://cds.cern.ch/record/2804337 |
Sumario: | The feasibility and performance of the future accelerators must, to a large extent, be predicted by simulation codes. This implies that simulation codes need to include effects that previously played a minor role. For example, in large electron machines like the FCC-ee the large energy variation along the ring requires that the magnets strength is adjusted to the beam energy at that location, normally referred to as tapering. In this article, we present new features implemented in the MAD-X code to enable and facilitate simulations of future colliders. |
---|