Cargando…
Using Machine Learning to Improve Dynamic Aperture Estimates
The dynamic aperture (DA) is an important concept in the study of nonlinear beam dynamics. Several analytical models used to describe the evolution of DA as a function of time, and to extrapolate to realistic time scales that would not be reachable otherwise due to computational limitations, have be...
Autores principales: | Van der Veken, Frederik F, Giovannozzi, Massimo, Maclean, Ewen H, Montanari, Carlo Emilio, Valentino, Gianluca |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-MOPAB028 http://cds.cern.ch/record/2804876 |
Ejemplares similares
-
Machine Learning Applied to the Analysis of Nonlinear Beam Dynamics Simulations for the CERN Large Hadron Collider and Its Luminosity Upgrade
por: Giovannozzi, Massimo, et al.
Publicado: (2021) -
Bridging mathematics and physics: models of the evolution of dynamic aperture in hadron colliders and applications to LHC
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Scaling Laws for the Time Dependence of Luminosity in Hadron Circular Accelerators based on Simple Models of Dynamic Aperture Evolution
por: Van der Veken, Frederik, et al.
Publicado: (2018) -
Dynamic aperture studies for HL-LHC V1.0
por: Cai, Yunhai, et al.
Publicado: (2018) -
Determination of the Phase-Space Stability Border with Machine Learning Techniques
por: Van der Veken, Frederik, et al.
Publicado: (2022)