Cargando…
Generalized Machine Learning Quantization Implementation for High Level Synthesis Targeting FPGAs
The Large Hadron Collider produces a large amount of data while operating, approximately one petabyte of data per second. The collider is currently undergoing an upgrade to collide more particles and produce even more data. In order to handle this large quantity of data, high throughput and low late...
Autor principal: | Trahms, Matthew Karl |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2804953 |
Ejemplares similares
-
Convolutional Layer Implementations in High-Level Synthesis for FPGAs
por: Lin, Kelvin
Publicado: (2021) -
Fast inference using FPGAs for DUNE data reconstruction
por: Rodriguez, Manuel J
Publicado: (2020) -
Implementing Machine Learning inference on FPGAs from software to hardware using hls4ml
por: Lorusso, Marco
Publicado: (2023) -
Implementation of Long Short-Term Memory Neural Networks in High-Level Synthesis Targeting FPGAs
por: Rao, Richa
Publicado: (2020) -
Kalman Filter track reconstruction on FPGAs for acceleration of the High Level Trigger of the CMS experiment at the HL-LHC
por: Summers, Sioni, et al.
Publicado: (2019)