Cargando…
Power Test of the First Two HL-LHC Insertion Quadrupole Magnets Built at CERN
The High-Luminosity project (HL-LHC) of the CERN Large Hadron Collider (LHC), requires low β* quadrupole magnets in Nb$_3$Sn technology that will be installed on each side of the ATLAS and CMS experiments. After a successful shortmodel magnet manufacture and test campaign, the project has advanced w...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/tasc.2022.3157574 http://cds.cern.ch/record/2806093 |
Sumario: | The High-Luminosity project (HL-LHC) of the
CERN Large Hadron Collider (LHC), requires low β* quadrupole
magnets in Nb$_3$Sn technology that will be installed on each side
of the ATLAS and CMS experiments. After a successful shortmodel magnet manufacture and test campaign, the project has
advanced with the production, assembly, and test of full-size 7.15-
m-long magnets. In the last two years, two CERN-built prototypes
(MQXFBP1 and MQXFBP2) have been tested and magnetically
measured at the CERN SM18 test facility. These are the longest
accelerator magnets based on Nb$_3$Sn technology built and tested
to date. In this paper, we present the test and analysis results
of these two magnets, with emphasis on quenches and training,
voltage-current measurements and the quench localization with
voltage taps and a new quench antenna. |
---|