Cargando…

PetaVolts per meter Plasmonics: Snowmass21 White Paper

Plasmonic modes offer the potential to achieve PetaVolts per meter fields, that would transform the current paradigm in collider development in addition to non-collider searches in fundamental physics. PetaVolts per meter plasmonics relies on collective oscillations of the free electron Fermi gas in...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahai, Aakash A., Golkowski, Mark, Gedney, Stephen, Katsouleas, Thomas, Andonian, Gerard, White, Glen, Stohr, Joachim, Muggli, Patric, Filipetto, Daniele, Zimmermann, Frank, Tajima, Toshiki, Mourou, Gerard, Resta-Lopez, Javier
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:http://cds.cern.ch/record/2806193
_version_ 1780972974208188416
author Sahai, Aakash A.
Golkowski, Mark
Gedney, Stephen
Katsouleas, Thomas
Andonian, Gerard
White, Glen
Stohr, Joachim
Muggli, Patric
Filipetto, Daniele
Zimmermann, Frank
Tajima, Toshiki
Mourou, Gerard
Resta-Lopez, Javier
author_facet Sahai, Aakash A.
Golkowski, Mark
Gedney, Stephen
Katsouleas, Thomas
Andonian, Gerard
White, Glen
Stohr, Joachim
Muggli, Patric
Filipetto, Daniele
Zimmermann, Frank
Tajima, Toshiki
Mourou, Gerard
Resta-Lopez, Javier
author_sort Sahai, Aakash A.
collection CERN
description Plasmonic modes offer the potential to achieve PetaVolts per meter fields, that would transform the current paradigm in collider development in addition to non-collider searches in fundamental physics. PetaVolts per meter plasmonics relies on collective oscillations of the free electron Fermi gas inherent in the conduction band of materials that have a suitable combination of constituent atoms and ionic lattice structure. As the conduction band free electron density, at equilibrium, can be as high as $\rm 10^{24}cm^{-3}$, electromagnetic fields of the order of $\rm 0.1 \sqrt{\rm n_0(10^{24}cm^{-3})} ~ PVm^{-1}$ can be sustained by plasmonic modes. Engineered materials not only allow highly tunable material properties but quite critically make it possible to overcome disruptive instabilities that dominate the interactions in bulk media. Due to rapid shielding by the free electron Fermi gas, dielectric effects are strongly suppressed. Because the ionic lattice, the corresponding electronic energy bands and the free electron gas are governed by quantum mechanical effects, comparisons with plasmas are merely notional. Based on this framework, it is critical to address various challenges that underlie PetaVolts per meter plasmonics including stable excitation of plasmonic modes while accounting for their effects on the ionic lattice and the electronic energy band structure over femtosecond timescales. We summarize the ongoing theoretical and experimental efforts as well as map out strategies for the future. Extreme plasmonic fields can shape the future by not only bringing tens of TeV to multi-PeV center-of-mass-energies within reach but also by opening novel pathways in non-collider HEP. In view of this promise, we invite the scientific community to help realize the immense potential of PV/m plasmonics and call for significant expansion of the US and international R&D program.
id cern-2806193
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28061932023-03-02T06:22:11Zhttp://cds.cern.ch/record/2806193engSahai, Aakash A.Golkowski, MarkGedney, StephenKatsouleas, ThomasAndonian, GerardWhite, GlenStohr, JoachimMuggli, PatricFilipetto, DanieleZimmermann, FrankTajima, ToshikiMourou, GerardResta-Lopez, JavierPetaVolts per meter Plasmonics: Snowmass21 White Paperphysics.plasm-phOther Fields of Physicshep-exParticle Physics - Experimentphysics.acc-phAccelerators and Storage RingsPlasmonic modes offer the potential to achieve PetaVolts per meter fields, that would transform the current paradigm in collider development in addition to non-collider searches in fundamental physics. PetaVolts per meter plasmonics relies on collective oscillations of the free electron Fermi gas inherent in the conduction band of materials that have a suitable combination of constituent atoms and ionic lattice structure. As the conduction band free electron density, at equilibrium, can be as high as $\rm 10^{24}cm^{-3}$, electromagnetic fields of the order of $\rm 0.1 \sqrt{\rm n_0(10^{24}cm^{-3})} ~ PVm^{-1}$ can be sustained by plasmonic modes. Engineered materials not only allow highly tunable material properties but quite critically make it possible to overcome disruptive instabilities that dominate the interactions in bulk media. Due to rapid shielding by the free electron Fermi gas, dielectric effects are strongly suppressed. Because the ionic lattice, the corresponding electronic energy bands and the free electron gas are governed by quantum mechanical effects, comparisons with plasmas are merely notional. Based on this framework, it is critical to address various challenges that underlie PetaVolts per meter plasmonics including stable excitation of plasmonic modes while accounting for their effects on the ionic lattice and the electronic energy band structure over femtosecond timescales. We summarize the ongoing theoretical and experimental efforts as well as map out strategies for the future. Extreme plasmonic fields can shape the future by not only bringing tens of TeV to multi-PeV center-of-mass-energies within reach but also by opening novel pathways in non-collider HEP. In view of this promise, we invite the scientific community to help realize the immense potential of PV/m plasmonics and call for significant expansion of the US and international R&D program.arXiv:2203.11623oai:cds.cern.ch:28061932022-03-22
spellingShingle physics.plasm-ph
Other Fields of Physics
hep-ex
Particle Physics - Experiment
physics.acc-ph
Accelerators and Storage Rings
Sahai, Aakash A.
Golkowski, Mark
Gedney, Stephen
Katsouleas, Thomas
Andonian, Gerard
White, Glen
Stohr, Joachim
Muggli, Patric
Filipetto, Daniele
Zimmermann, Frank
Tajima, Toshiki
Mourou, Gerard
Resta-Lopez, Javier
PetaVolts per meter Plasmonics: Snowmass21 White Paper
title PetaVolts per meter Plasmonics: Snowmass21 White Paper
title_full PetaVolts per meter Plasmonics: Snowmass21 White Paper
title_fullStr PetaVolts per meter Plasmonics: Snowmass21 White Paper
title_full_unstemmed PetaVolts per meter Plasmonics: Snowmass21 White Paper
title_short PetaVolts per meter Plasmonics: Snowmass21 White Paper
title_sort petavolts per meter plasmonics: snowmass21 white paper
topic physics.plasm-ph
Other Fields of Physics
hep-ex
Particle Physics - Experiment
physics.acc-ph
Accelerators and Storage Rings
url http://cds.cern.ch/record/2806193
work_keys_str_mv AT sahaiaakasha petavoltspermeterplasmonicssnowmass21whitepaper
AT golkowskimark petavoltspermeterplasmonicssnowmass21whitepaper
AT gedneystephen petavoltspermeterplasmonicssnowmass21whitepaper
AT katsouleasthomas petavoltspermeterplasmonicssnowmass21whitepaper
AT andoniangerard petavoltspermeterplasmonicssnowmass21whitepaper
AT whiteglen petavoltspermeterplasmonicssnowmass21whitepaper
AT stohrjoachim petavoltspermeterplasmonicssnowmass21whitepaper
AT mugglipatric petavoltspermeterplasmonicssnowmass21whitepaper
AT filipettodaniele petavoltspermeterplasmonicssnowmass21whitepaper
AT zimmermannfrank petavoltspermeterplasmonicssnowmass21whitepaper
AT tajimatoshiki petavoltspermeterplasmonicssnowmass21whitepaper
AT mourougerard petavoltspermeterplasmonicssnowmass21whitepaper
AT restalopezjavier petavoltspermeterplasmonicssnowmass21whitepaper