Cargando…
Machine Learning Models for Breakdown Prediction in RF Cavities for Accelerators
Radio Frequency (RF) breakdowns are one of the most prevalent limits in RF cavities for particle accelerators. During a breakdown, field enhancement associated with small deformations on the cavity surface results in electrical arcs. Such arcs degrade a passing beam and if they occur frequently, the...
Autores principales: | Obermair, Christoph, Apollonio, Andrea, Cartier-Michaud, Thomas, Catalán Lasheras, Nuria, Felsberger, Lukas, Millar, William L, Pernkopf, Franz, Wuensch, Walter |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-MOPAB344 http://cds.cern.ch/record/2806714 |
Ejemplares similares
-
Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities
por: Obermair, Christoph, et al.
Publicado: (2022) -
Data Augmentation for Breakdown Prediction in CLIC RF Cavities
por: Bovbjerg, Holger, et al.
Publicado: (2022) -
Machine learning for early fault detection in accelerator systems
por: Apollonio, Andrea, et al.
Publicado: (2020) -
Machine learning for early fault detection in accelerator systems
por: Apollonio, Andrea, et al.
Publicado: (2020) -
High Gradient Breakdown in Normal-Conducting RF Cavities
por: Wuensch, Walter
Publicado: (2002)