Cargando…
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with objec...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-022-10665-7 http://cds.cern.ch/record/2807254 |
_version_ | 1780973040895524864 |
---|---|
author | Qasim, Shah Rukh Chernyavskaya, Nadezda Kieseler, Jan Long, Kenneth Viazlo, Oleksandr Pierini, Maurizio Nawaz, Raheel |
author_facet | Qasim, Shah Rukh Chernyavskaya, Nadezda Kieseler, Jan Long, Kenneth Viazlo, Oleksandr Pierini, Maurizio Nawaz, Raheel |
author_sort | Qasim, Shah Rukh |
collection | CERN |
description | We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique. Through a single-shot approach, the reconstruction task is paired with energy regression. We describe the reconstruction performance in terms of efficiency as well as in terms of energy resolution. In addition, we show the jet reconstruction performance of our method and discuss its inference computational cost. To our knowledge, this work is the first-ever example of single-shot calorimetric reconstruction of ${\mathcal {O}}(1000)$ particles in high-luminosity conditions with 200 pileup. |
id | cern-2807254 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28072542023-01-31T09:41:57Zdoi:10.1140/epjc/s10052-022-10665-7http://cds.cern.ch/record/2807254engQasim, Shah RukhChernyavskaya, NadezdaKieseler, JanLong, KennethViazlo, OleksandrPierini, MaurizioNawaz, RaheelEnd-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networkshep-exParticle Physics - Experimentcs.LGComputing and Computerscs.CVComputing and Computersphysics.ins-detDetectors and Experimental TechniquesWe present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique. Through a single-shot approach, the reconstruction task is paired with energy regression. We describe the reconstruction performance in terms of efficiency as well as in terms of energy resolution. In addition, we show the jet reconstruction performance of our method and discuss its inference computational cost. To our knowledge, this work is the first-ever example of single-shot calorimetric reconstruction of ${\mathcal {O}}(1000)$ particles in high-luminosity conditions with 200 pileup.We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique. Through a single-shot approach, the reconstruction task is paired with energy regression. We describe the reconstruction performance in terms of efficiency as well as in terms of energy resolution. In addition, we show the jet reconstruction performance of our method and discuss its inference computational cost. To our knowledge, this work is the first-ever example of single-shot calorimetric reconstruction of ${\cal O}(1000)$ particles in high-luminosity conditions with 200 pileup.arXiv:2204.01681oai:cds.cern.ch:28072542022-04-04 |
spellingShingle | hep-ex Particle Physics - Experiment cs.LG Computing and Computers cs.CV Computing and Computers physics.ins-det Detectors and Experimental Techniques Qasim, Shah Rukh Chernyavskaya, Nadezda Kieseler, Jan Long, Kenneth Viazlo, Oleksandr Pierini, Maurizio Nawaz, Raheel End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title | End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title_full | End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title_fullStr | End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title_full_unstemmed | End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title_short | End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
title_sort | end-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks |
topic | hep-ex Particle Physics - Experiment cs.LG Computing and Computers cs.CV Computing and Computers physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1140/epjc/s10052-022-10665-7 http://cds.cern.ch/record/2807254 |
work_keys_str_mv | AT qasimshahrukh endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT chernyavskayanadezda endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT kieselerjan endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT longkenneth endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT viazlooleksandr endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT pierinimaurizio endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks AT nawazraheel endtoendmultiparticlereconstructioninhighoccupancyimagingcalorimeterswithgraphneuralnetworks |