Cargando…
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with objec...
Autores principales: | Qasim, Shah Rukh, Chernyavskaya, Nadezda, Kieseler, Jan, Long, Kenneth, Viazlo, Oleksandr, Pierini, Maurizio, Nawaz, Raheel |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-022-10665-7 http://cds.cern.ch/record/2807254 |
Ejemplares similares
-
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019)