Cargando…
Minimizing plasma temperature for antimatter mixing experiments
The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fracti...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202226201007 http://cds.cern.ch/record/2808456 |
_version_ | 1780973097774481408 |
---|---|
author | Hunter, E.D. Amsler, C. Breuker, H. Chesnevskaya, S. Costantini, G. Ferragut, R. Giammarchi, M. Gligorova, A. Gosta, G. Higaki, H. Kanai, Y. Killian, C. Kletzl, V. Kraxberger, V. Kuroda, N. Lanz, A. Leali, M. Mäckel, V. Maero, G. Malbrunot, C. Mascagna, V. Matsuda, Y. Migliorati, S. Murtagh, D.J. Nagata, Y. Nanda, A. Nowak, L. Pasino, E. Romé, M. Simon, M.C. Tajima, M. Toso, V. Ulmer, S. Uggerhøj, U. Venturelli, L. Weiser, A. Widmann, E. Wolz, T. Yamazaki, Y. Zmeskal, J. |
author_facet | Hunter, E.D. Amsler, C. Breuker, H. Chesnevskaya, S. Costantini, G. Ferragut, R. Giammarchi, M. Gligorova, A. Gosta, G. Higaki, H. Kanai, Y. Killian, C. Kletzl, V. Kraxberger, V. Kuroda, N. Lanz, A. Leali, M. Mäckel, V. Maero, G. Malbrunot, C. Mascagna, V. Matsuda, Y. Migliorati, S. Murtagh, D.J. Nagata, Y. Nanda, A. Nowak, L. Pasino, E. Romé, M. Simon, M.C. Tajima, M. Toso, V. Ulmer, S. Uggerhøj, U. Venturelli, L. Weiser, A. Widmann, E. Wolz, T. Yamazaki, Y. Zmeskal, J. |
author_sort | Hunter, E.D. |
collection | CERN |
description | The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation. |
id | cern-2808456 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28084562023-02-10T04:00:56Zdoi:10.1051/epjconf/202226201007http://cds.cern.ch/record/2808456engHunter, E.D.Amsler, C.Breuker, H.Chesnevskaya, S.Costantini, G.Ferragut, R.Giammarchi, M.Gligorova, A.Gosta, G.Higaki, H.Kanai, Y.Killian, C.Kletzl, V.Kraxberger, V.Kuroda, N.Lanz, A.Leali, M.Mäckel, V.Maero, G.Malbrunot, C.Mascagna, V.Matsuda, Y.Migliorati, S.Murtagh, D.J.Nagata, Y.Nanda, A.Nowak, L.Pasino, E.Romé, M.Simon, M.C.Tajima, M.Toso, V.Ulmer, S.Uggerhøj, U.Venturelli, L.Weiser, A.Widmann, E.Wolz, T.Yamazaki, Y.Zmeskal, J.Minimizing plasma temperature for antimatter mixing experimentsphysics.plasm-phOther Fields of PhysicsThe ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation.The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation.arXiv:2201.01256oai:cds.cern.ch:28084562022 |
spellingShingle | physics.plasm-ph Other Fields of Physics Hunter, E.D. Amsler, C. Breuker, H. Chesnevskaya, S. Costantini, G. Ferragut, R. Giammarchi, M. Gligorova, A. Gosta, G. Higaki, H. Kanai, Y. Killian, C. Kletzl, V. Kraxberger, V. Kuroda, N. Lanz, A. Leali, M. Mäckel, V. Maero, G. Malbrunot, C. Mascagna, V. Matsuda, Y. Migliorati, S. Murtagh, D.J. Nagata, Y. Nanda, A. Nowak, L. Pasino, E. Romé, M. Simon, M.C. Tajima, M. Toso, V. Ulmer, S. Uggerhøj, U. Venturelli, L. Weiser, A. Widmann, E. Wolz, T. Yamazaki, Y. Zmeskal, J. Minimizing plasma temperature for antimatter mixing experiments |
title | Minimizing plasma temperature for antimatter mixing experiments |
title_full | Minimizing plasma temperature for antimatter mixing experiments |
title_fullStr | Minimizing plasma temperature for antimatter mixing experiments |
title_full_unstemmed | Minimizing plasma temperature for antimatter mixing experiments |
title_short | Minimizing plasma temperature for antimatter mixing experiments |
title_sort | minimizing plasma temperature for antimatter mixing experiments |
topic | physics.plasm-ph Other Fields of Physics |
url | https://dx.doi.org/10.1051/epjconf/202226201007 http://cds.cern.ch/record/2808456 |
work_keys_str_mv | AT huntered minimizingplasmatemperatureforantimattermixingexperiments AT amslerc minimizingplasmatemperatureforantimattermixingexperiments AT breukerh minimizingplasmatemperatureforantimattermixingexperiments AT chesnevskayas minimizingplasmatemperatureforantimattermixingexperiments AT costantinig minimizingplasmatemperatureforantimattermixingexperiments AT ferragutr minimizingplasmatemperatureforantimattermixingexperiments AT giammarchim minimizingplasmatemperatureforantimattermixingexperiments AT gligorovaa minimizingplasmatemperatureforantimattermixingexperiments AT gostag minimizingplasmatemperatureforantimattermixingexperiments AT higakih minimizingplasmatemperatureforantimattermixingexperiments AT kanaiy minimizingplasmatemperatureforantimattermixingexperiments AT killianc minimizingplasmatemperatureforantimattermixingexperiments AT kletzlv minimizingplasmatemperatureforantimattermixingexperiments AT kraxbergerv minimizingplasmatemperatureforantimattermixingexperiments AT kurodan minimizingplasmatemperatureforantimattermixingexperiments AT lanza minimizingplasmatemperatureforantimattermixingexperiments AT lealim minimizingplasmatemperatureforantimattermixingexperiments AT mackelv minimizingplasmatemperatureforantimattermixingexperiments AT maerog minimizingplasmatemperatureforantimattermixingexperiments AT malbrunotc minimizingplasmatemperatureforantimattermixingexperiments AT mascagnav minimizingplasmatemperatureforantimattermixingexperiments AT matsuday minimizingplasmatemperatureforantimattermixingexperiments AT miglioratis minimizingplasmatemperatureforantimattermixingexperiments AT murtaghdj minimizingplasmatemperatureforantimattermixingexperiments AT nagatay minimizingplasmatemperatureforantimattermixingexperiments AT nandaa minimizingplasmatemperatureforantimattermixingexperiments AT nowakl minimizingplasmatemperatureforantimattermixingexperiments AT pasinoe minimizingplasmatemperatureforantimattermixingexperiments AT romem minimizingplasmatemperatureforantimattermixingexperiments AT simonmc minimizingplasmatemperatureforantimattermixingexperiments AT tajimam minimizingplasmatemperatureforantimattermixingexperiments AT tosov minimizingplasmatemperatureforantimattermixingexperiments AT ulmers minimizingplasmatemperatureforantimattermixingexperiments AT uggerhøju minimizingplasmatemperatureforantimattermixingexperiments AT venturellil minimizingplasmatemperatureforantimattermixingexperiments AT weisera minimizingplasmatemperatureforantimattermixingexperiments AT widmanne minimizingplasmatemperatureforantimattermixingexperiments AT wolzt minimizingplasmatemperatureforantimattermixingexperiments AT yamazakiy minimizingplasmatemperatureforantimattermixingexperiments AT zmeskalj minimizingplasmatemperatureforantimattermixingexperiments |