Cargando…
Towards Reliable Neural Generative Modeling of Detectors
The increasing luminosities of future data taking at Large Hadron Collider and next generation collider experiments require an unprecedented amount of simulated events to be produced. Such large scale productions demand a significant amount of valuable computing resources. This brings a demand to us...
Autores principales: | Anderlini, Lucio, Barbetti, Matteo, Derkach, Denis, Kazeev, Nikita, Maevskiy, Artem, Mokhnenko, Sergei |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012130 http://cds.cern.ch/record/2808834 |
Ejemplares similares
Cargando…
System reliability and integrity
por: Infotech International. Maidenhead
Publicado: (1978)
por: Infotech International. Maidenhead
Publicado: (1978)
Ejemplares similares
-
A full detector description using neural network driven simulation
por: Ratnikov, Fedor, et al.
Publicado: (2023) -
Lamarr: the ultra-fast simulation option for the LHCb experiment
por: Anderlini, Lucio, et al.
Publicado: (2022) -
Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
por: Maevskiy, Artem, et al.
Publicado: (2019) -
The LHCb ultra-fast simulation option, Lamarr: design and validation
por: Anderlini, Lucio, et al.
Publicado: (2023) -
Robust Neural Particle Identification Models
por: Ryzhikov, Artem, et al.
Publicado: (2023)