Cargando…
Positron accumulation in the GBAR experiment
We present a description of the GBAR positron (<math display="inline" id="d1e1537" altimg="si3.svg"><msup><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mo>+</mo></mrow></msup></math>)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2022.167263 http://cds.cern.ch/record/2809336 |
Sumario: | We present a description of the GBAR positron (<math display="inline" id="d1e1537" altimg="si3.svg"><msup><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mo>+</mo></mrow></msup></math>) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (<math display="inline" id="d1e1548" altimg="si4.svg"><mover accent="false" class="mml-overline"><mrow><mi mathvariant="normal">H</mi></mrow><mo accent="true">¯</mo></mover></math>) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (<math display="inline" id="d1e1559" altimg="si5.svg"><mrow><mover accent="false" class="mml-overline"><mrow><mi mathvariant="normal">H</mi></mrow><mo accent="true">¯</mo></mover><msup><mrow><mspace width="0.16667em"/></mrow><mrow><mo>+</mo></mrow></msup></mrow></math>), which has been cooled to a low temperature, and observing the subsequent <math display="inline" id="d1e1575" altimg="si4.svg"><mover accent="false" class="mml-overline"><mrow><mi mathvariant="normal">H</mi></mrow><mo accent="true">¯</mo></mover></math> annihilation following free fall. To produce one <math display="inline" id="d1e1584" altimg="si5.svg"><mrow><mover accent="false" class="mml-overline"><mrow><mi mathvariant="normal">H</mi></mrow><mo accent="true">¯</mo></mover><msup><mrow><mspace width="0.16667em"/></mrow><mrow><mo>+</mo></mrow></msup></mrow></math> ion, about <math display="inline" id="d1e1600" altimg="si8.svg"><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></math> positrons, efficiently converted into positronium (Ps), together with about <math display="inline" id="d1e1614" altimg="si9.svg"><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math> antiprotons (<math display="inline" id="d1e1628" altimg="si10.svg"><mover accent="false" class="mml-overline"><mrow><mi mathvariant="normal">p</mi></mrow><mo accent="true">¯</mo></mover></math>), are required. The positrons, produced from an electron linac-based system, are accumulated first in the BGT whereafter they are stacked in the ultra-high vacuum HFT, where we have been able to trap 1.4(2) <math display="inline" id="d1e1637" altimg="si11.svg"><mo>×</mo></math> 10<sup loc="post">9</sup> positrons in 1100 s. |
---|