Cargando…
Denoising of Optics Measurements Using Autoencoder Neural Networks
Noise artefacts can appear in optics measurements data due to instrumentation imperfections or uncertainties in the applied analysis methods. A special type of semi-supervised neural networks, autoencoders, are widely applied to denoising tasks in image and signal processing as well as to generative...
Autores principales: | Fol, Elena, Tomás García, Rogelio |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-THPAB068 http://cds.cern.ch/record/2809485 |
Ejemplares similares
-
Machine Learning Techniques for Optics Measurements and Corrections
por: Fol, Elena, et al.
Publicado: (2021) -
Reconstruction of Linear Optics Observables Using Supervised Learning
por: Fol, Elena, et al.
Publicado: (2021) -
Optics corrections using machine learning in the LHC
por: Fol, Elena, et al.
Publicado: (2019) -
Unsupervised Learning Techniques for Tune Cleaning Measurement
por: García Morales, Hector, et al.
Publicado: (2021) -
HL-LHC Local Linear Optics Correction at the Interaction Regions
por: García Morales, Hector, et al.
Publicado: (2021)