Cargando…
Graph Neural Network Track Reconstruction for the ATLAS ITk Detector
Graph Neural Networks (GNNs) have been shown to produce high accuracy performance on a variety of HEP tasks, including track reconstruction in the TrackML challenge, and tagging in jet physics. However, GNNs are less explored in applications with noisy, heterogeneous or ambiguous data. These element...
Autores principales: | Murnane, Daniel Thomas, Vallier, Alexis, Rougier, Charline, Calafiura, Paolo, Stark, Jan, Ju, Xiangyang, Farrell, Steven Andrew, Caillou, Sylvain, Neubauer, Mark, Atkinson, Markus Julian |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2809518 |
Ejemplares similares
-
ATLAS ITk Track Reconstruction with a GNN-based pipeline
por: Caillou, Sylvain, et al.
Publicado: (2022) -
Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain
por: Caillou, Sylvain, et al.
Publicado: (2023) -
Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC
por: Rougier, Charline
Publicado: (2021) -
Performance of the GNN-based tracking for ATLAS ITk
por: Ju, Xiangyang
Publicado: (2023) -
Graph Neural Networks for High Luminosity Track Reconstruction
por: Murnane, Daniel Thomas
Publicado: (2022)