Cargando…
Electromagnetic Modelling of Kicker Magnets to Derive Equivalent Circuits
An equivalent circuit model of a kicker magnet system is an invaluable tool for predicting the performance, studying possible modifications and for helping to diagnose faults. The frequency content of pulses associated with a ferrite loaded transmission line kicker magnet generally extend up to a fe...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-WEPAB346 http://cds.cern.ch/record/2809580 |
Sumario: | An equivalent circuit model of a kicker magnet system is an invaluable tool for predicting the performance, studying possible modifications and for helping to diagnose faults. The frequency content of pulses associated with a ferrite loaded transmission line kicker magnet generally extend up to a few tens of MHz: hence, it is feasible to accurately model such a kicker magnet using lumped elements. This modelling technique is powerful since it in general has a run time several orders of magnitude shorter than a full wave electromagnetic simulation. In this paper, we determine values, including those of parasitic components, using modern simulation tools, for use in the lumped equivalent circuit models. In addition, the paper describes a method to simulate coupling between beam and the electrical circuit of a kicker magnet at relatively low frequencies: this allows one to use circuit analysis tools to study means of mitigating beam induced resonances. |
---|