Cargando…
A Reliable Monitoring and Control System for Vacuum Surface Treatments
Secondary electron yield (SEY) of beam-screens in the LHC puts limits on the performance of the accelerator. To ramp up the luminosity for the HiLumi LHC project, the vacuum surface coatings team are coming up with ways to treat the surfaces to control the electron cloud and bring the SEY down to ac...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-ICALEPCS2021-TUPV039 http://cds.cern.ch/record/2809593 |
Sumario: | Secondary electron yield (SEY) of beam-screens in the LHC puts limits on the performance of the accelerator. To ramp up the luminosity for the HiLumi LHC project, the vacuum surface coatings team are coming up with ways to treat the surfaces to control the electron cloud and bring the SEY down to acceptable levels. These treatments can take days to weeks and need to work reliably to be sure the surfaces are not damaged. An embedded control and monitoring system based on a CompactRIO is being developed to run these processes in a reliable way. This paper describes the techniques used to create a LabVIEW-based real-time embedded system that is reliable as well as easy to read and modify. We will show how simpler approaches can in some situations yield better solutions. |
---|