Cargando…
Eigenvector recomposition: a new method to correlate flavor-tagging systematic uncertainties across analyses
In order to simplify the treatment of the flavor-tagging scale factor uncertainties in physics analyses, their large number is currently significantly reduced using an eigenvector decomposition approach that preserves both the total size of the uncertainty and the underlying correlations. This metho...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2809651 |
Ejemplares similares
-
Reweighting heavy-flavor production fractions to reduce flavor modelling uncertainties for ATLAS
por: The ATLAS collaboration
Publicado: (2022) -
Flavor Tagging Efficiency Parametrisations with Graph Neural Networks
por: The ATLAS collaboration
Publicado: (2022) -
Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector
por: The ATLAS collaboration
Publicado: (2014) -
Evaluating statistical uncertainties and correlations using the bootstrap method
por: The ATLAS collaboration
Publicado: (2021) -
flavor-tagging in ATLAS
por: Pollard, Christopher Samuel
Publicado: (2019)