Cargando…
Graph Neural Networks for High Luminosity Track Reconstruction
<!--HTML-->b"<p>With the upgrade to HL-LHC, traditional algorithms in the event analysis pipeline may struggle to scale to meet throughput requirements, due to the density of detector data and incompatibility with modern heterogeneous parallelism. A promising alternative path is eme...
Autor principal: | Murnane, Daniel Thomas |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2809959 |
Ejemplares similares
-
Jet flavour identification using Graph Neural Networks in CMS
por: Gouskos, Loukas
Publicado: (2022) -
TrackML : The High Energy Physics Tracking Challenge
por: Rousseau, David
Publicado: (2018) -
Application and development of advanced deep neural networks for high-granularity calorimeters.
por: Kieseler, Jan
Publicado: (2020) -
Tracking at Hadron Colliders with Machine Learning
por: Vlimant, Jean-Roch
Publicado: (2019) -
How the machine learning conquers reconstruction in neutrino experiments
por: Sulej, Robert
Publicado: (2017)