Cargando…
High Energy Physics Calorimeter Detector Simulation Using Generative Adversarial Networks With Domain Related Constraints
Generative Adversarial Networks (GANs) have gained notoriety by generating highly realistic images. The present work explores GAN for simulating High Energy Physics detectors, interpreting detector output as three-dimensional images. The demands and requirements of a scientific simulation are quite...
Autores principales: | Khattak, Gul Rukh, Vallecorsa, Sofia, Carminati, Federico, Khan, Gul Muhammad |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/access.2021.3101946 http://cds.cern.ch/record/2810005 |
Ejemplares similares
-
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Particle Detector Simulation using Generative Adversarial Networks with Domain Related Constraints
por: Khattak, Gul Rukh
Publicado: (2019) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
Distributed Training of Generative Adversarial Networks for Fast Simulation
por: Vallecorsa, Sofia, et al.
Publicado: (2019) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019)