Cargando…
Driven 3D Beam Oscillations for Optics Measurements in Synchrotrons
Optics measurements in storage rings employ turn-by-turn data of transversely excited beams. Traditionally, to measure chromatic properties, the relative momentum is changed step-wise, which is time-consuming and almost impractical during the energy ramp. We present an optics measurement method base...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-THXA07 http://cds.cern.ch/record/2811648 |
Sumario: | Optics measurements in storage rings employ turn-by-turn data of transversely excited beams. Traditionally, to measure chromatic properties, the relative momentum is changed step-wise, which is time-consuming and almost impractical during the energy ramp. We present an optics measurement method based on adiabatic simultaneous 3-dimensional beam excitation, which is more time-efficient and well fitted for the energy ramp. This method was successfully demonstrated in the LHC utilising AC-dipoles in combination either with a slow RF-frequency modulation or a driven RF-phase modulation close to the synchrotron frequency. Faster longitudinal oscillations improve the accuracy of optics parameters inferred from the synchro-betatron sidebands. This paper reports on the experimental demonstration of optics measurements based on 3D driven beam excitations and the plans for LHC Run 3. |
---|