Cargando…
Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to g...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216 http://cds.cern.ch/record/2812523 |
Sumario: | One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN. |
---|