Cargando…

Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling

One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to g...

Descripción completa

Detalles Bibliográficos
Autores principales: Schenk, Michael, Coyle, Loic, Giovannozzi, Massimo, Krymova, Ekaterina, Mereghetti, Alessio, Obozinski, Guillaume, Pieloni, Tatiana
Lenguaje:eng
Publicado: JACoW 2021
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216
http://cds.cern.ch/record/2812523
Descripción
Sumario:One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN.