Cargando…

Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling

One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to g...

Descripción completa

Detalles Bibliográficos
Autores principales: Schenk, Michael, Coyle, Loic, Giovannozzi, Massimo, Krymova, Ekaterina, Mereghetti, Alessio, Obozinski, Guillaume, Pieloni, Tatiana
Lenguaje:eng
Publicado: JACoW 2021
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216
http://cds.cern.ch/record/2812523
_version_ 1780973345084276736
author Schenk, Michael
Coyle, Loic
Giovannozzi, Massimo
Krymova, Ekaterina
Mereghetti, Alessio
Obozinski, Guillaume
Pieloni, Tatiana
author_facet Schenk, Michael
Coyle, Loic
Giovannozzi, Massimo
Krymova, Ekaterina
Mereghetti, Alessio
Obozinski, Guillaume
Pieloni, Tatiana
author_sort Schenk, Michael
collection CERN
description One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN.
id cern-2812523
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
publisher JACoW
record_format invenio
spelling cern-28125232022-06-17T19:10:50Zdoi:10.18429/JACoW-IPAC2021-TUPAB216http://cds.cern.ch/record/2812523engSchenk, MichaelCoyle, LoicGiovannozzi, MassimoKrymova, EkaterinaMereghetti, AlessioObozinski, GuillaumePieloni, TatianaModeling Particle Stability Plots for Accelerator Optimization Using Adaptive SamplingAccelerators and Storage RingsOne key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN.JACoWoai:cds.cern.ch:28125232021
spellingShingle Accelerators and Storage Rings
Schenk, Michael
Coyle, Loic
Giovannozzi, Massimo
Krymova, Ekaterina
Mereghetti, Alessio
Obozinski, Guillaume
Pieloni, Tatiana
Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title_full Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title_fullStr Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title_full_unstemmed Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title_short Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
title_sort modeling particle stability plots for accelerator optimization using adaptive sampling
topic Accelerators and Storage Rings
url https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216
http://cds.cern.ch/record/2812523
work_keys_str_mv AT schenkmichael modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT coyleloic modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT giovannozzimassimo modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT krymovaekaterina modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT mereghettialessio modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT obozinskiguillaume modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling
AT pielonitatiana modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling