Cargando…
Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to g...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216 http://cds.cern.ch/record/2812523 |
_version_ | 1780973345084276736 |
---|---|
author | Schenk, Michael Coyle, Loic Giovannozzi, Massimo Krymova, Ekaterina Mereghetti, Alessio Obozinski, Guillaume Pieloni, Tatiana |
author_facet | Schenk, Michael Coyle, Loic Giovannozzi, Massimo Krymova, Ekaterina Mereghetti, Alessio Obozinski, Guillaume Pieloni, Tatiana |
author_sort | Schenk, Michael |
collection | CERN |
description | One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN. |
id | cern-2812523 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
publisher | JACoW |
record_format | invenio |
spelling | cern-28125232022-06-17T19:10:50Zdoi:10.18429/JACoW-IPAC2021-TUPAB216http://cds.cern.ch/record/2812523engSchenk, MichaelCoyle, LoicGiovannozzi, MassimoKrymova, EkaterinaMereghetti, AlessioObozinski, GuillaumePieloni, TatianaModeling Particle Stability Plots for Accelerator Optimization Using Adaptive SamplingAccelerators and Storage RingsOne key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN.JACoWoai:cds.cern.ch:28125232021 |
spellingShingle | Accelerators and Storage Rings Schenk, Michael Coyle, Loic Giovannozzi, Massimo Krymova, Ekaterina Mereghetti, Alessio Obozinski, Guillaume Pieloni, Tatiana Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title_full | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title_fullStr | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title_full_unstemmed | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title_short | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
title_sort | modeling particle stability plots for accelerator optimization using adaptive sampling |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216 http://cds.cern.ch/record/2812523 |
work_keys_str_mv | AT schenkmichael modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT coyleloic modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT giovannozzimassimo modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT krymovaekaterina modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT mereghettialessio modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT obozinskiguillaume modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling AT pielonitatiana modelingparticlestabilityplotsforacceleratoroptimizationusingadaptivesampling |