Cargando…
Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling
One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to g...
Autores principales: | Schenk, Michael, Coyle, Loic, Giovannozzi, Massimo, Krymova, Ekaterina, Mereghetti, Alessio, Obozinski, Guillaume, Pieloni, Tatiana |
---|---|
Lenguaje: | eng |
Publicado: |
JACoW
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-TUPAB216 http://cds.cern.ch/record/2812523 |
Ejemplares similares
-
Data-driven modeling of beam loss in the LHC
por: Krymova, Ekaterina, et al.
Publicado: (2022) -
Detection and Classification of Collective Beam Behaviour in the LHC
por: Coyle, Loic, et al.
Publicado: (2021) -
Machine learning in accelerator physics: Applications at the CERN Large Hadron Collider
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide
por: Krymova, Ekaterina, et al.
Publicado: (2022) -
Using Dynamic Indicators for Probing Single-Particle Stability in Circular Accelerators
por: Montanari, Carlo Emilio, et al.
Publicado: (2022)