Cargando…
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks. We first introduce support for low precision quantization in existing ONNX-based quantization formats by leveraging integer clipping, result...
Autores principales: | Pappalardo, Alessandro, Umuroglu, Yaman, Blott, Michaela, Mitrevski, Jovan, Hawks, Ben, Tran, Nhan, Loncar, Vladimir, Summers, Sioni, Borras, Hendrik, Muhizi, Jules, Trahms, Matthew, Hsu, Shih-Chieh, Hauck, Scott, Duarte, Javier |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2813346 |
Ejemplares similares
-
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020)