Cargando…
Embedding of particle tracking data using hybrid quantum-classical neural networks
The High Luminosity Large Hadron Collider (HL-LHC) at CERN will involve a significant increase in complexity and sheer size of data with respect to the current LHC experimental complex. Hence, the task of reconstructing the particle trajectories will become more involved due to the number of simulta...
Autores principales: | Rieger, Carla, Tüysüz, Cenk, Novotny, Kristiane, Vallecorsa, Sofia, Demirköz, Bilge, Potamianos, Karolos, Dobos, Daniel, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125103065 http://cds.cern.ch/record/2813802 |
Ejemplares similares
-
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021) -
Quantum Track Reconstruction Algorithms for non-HEP applications
por: Novotny, Kristiane Sylvia, et al.
Publicado: (2021) -
Performance of Particle Tracking Using a Quantum Graph Neural Network
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
Particle Track Reconstruction with Quantum Algorithms
por: Tüysüz, Cenk, et al.
Publicado: (2020) -
A Quantum Graph Neural Network Approach to Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2020)