Cargando…

A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton

The optimization of reconstruction algorithms has become a key aspect in LHCb as it is currently undergoing a major upgrade that will considerably increase the data processing rate. Aiming to accelerate the second most time consuming reconstruction process of the trigger, we propose an alternative r...

Descripción completa

Detalles Bibliográficos
Autores principales: Valls Canudas, Núria , Vilasis Cardona, Xavier , Calvo Gómez, Míriam , Golobardes Ribé, Elisabet 
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/202125104008
http://cds.cern.ch/record/2814342
_version_ 1780973437782589440
author Valls Canudas, Núria 
Vilasis Cardona, Xavier 
Calvo Gómez, Míriam 
Golobardes Ribé, Elisabet 
author_facet Valls Canudas, Núria 
Vilasis Cardona, Xavier 
Calvo Gómez, Míriam 
Golobardes Ribé, Elisabet 
author_sort Valls Canudas, Núria 
collection CERN
description The optimization of reconstruction algorithms has become a key aspect in LHCb as it is currently undergoing a major upgrade that will considerably increase the data processing rate. Aiming to accelerate the second most time consuming reconstruction process of the trigger, we propose an alternative reconstruction algorithm for the Electromagnetic Calorimeter of LHCb. Together with the use of deep learning techniques and the understanding of the current algorithm, our proposal decomposes the reconstruction process into small parts that benefit the generalized learning of small neural network architectures and simplifies the training dataset. This approach takes as input the full simulation data of the calorimeter and outputs a list of reconstructed clusters in a nearly constant time without any dependency in the event complexity.
id cern-2814342
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-28143422022-11-17T14:30:13Zdoi:10.1051/epjconf/202125104008http://cds.cern.ch/record/2814342engValls Canudas, Núria Vilasis Cardona, Xavier Calvo Gómez, Míriam Golobardes Ribé, Elisabet A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular AutomatonDetectors and Experimental TechniquesComputing and ComputersThe optimization of reconstruction algorithms has become a key aspect in LHCb as it is currently undergoing a major upgrade that will considerably increase the data processing rate. Aiming to accelerate the second most time consuming reconstruction process of the trigger, we propose an alternative reconstruction algorithm for the Electromagnetic Calorimeter of LHCb. Together with the use of deep learning techniques and the understanding of the current algorithm, our proposal decomposes the reconstruction process into small parts that benefit the generalized learning of small neural network architectures and simplifies the training dataset. This approach takes as input the full simulation data of the calorimeter and outputs a list of reconstructed clusters in a nearly constant time without any dependency in the event complexity.oai:cds.cern.ch:28143422021
spellingShingle Detectors and Experimental Techniques
Computing and Computers
Valls Canudas, Núria 
Vilasis Cardona, Xavier 
Calvo Gómez, Míriam 
Golobardes Ribé, Elisabet 
A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title_full A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title_fullStr A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title_full_unstemmed A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title_short A Deep Learning approach to LHCb Calorimeter reconstruction using a Cellular Automaton
title_sort deep learning approach to lhcb calorimeter reconstruction using a cellular automaton
topic Detectors and Experimental Techniques
Computing and Computers
url https://dx.doi.org/10.1051/epjconf/202125104008
http://cds.cern.ch/record/2814342
work_keys_str_mv AT vallscanudasnuria adeeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT vilasiscardonaxavier adeeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT calvogomezmiriam adeeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT golobardesribeelisabet adeeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT vallscanudasnuria deeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT vilasiscardonaxavier deeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT calvogomezmiriam deeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton
AT golobardesribeelisabet deeplearningapproachtolhcbcalorimeterreconstructionusingacellularautomaton