Cargando…
Laurelin: Java-native ROOT I/O for Apache Spark
Apache Spark[1] is one of the predominant frameworks in the big data space, providing a fully-functional query processing engine, vendor support for hardware accelerators, and performant integrations with scientific computing libraries. One difficulty in adopting conventional big data frameworks to...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125102072 http://cds.cern.ch/record/2814360 |
_version_ | 1780973442058682368 |
---|---|
author | Melo, Andrew Shadura, Oksana |
author_facet | Melo, Andrew Shadura, Oksana |
author_sort | Melo, Andrew |
collection | CERN |
description | Apache Spark[1] is one of the predominant frameworks in the big data space, providing a fully-functional query processing engine, vendor support for hardware accelerators, and performant integrations with scientific computing libraries. One difficulty in adopting conventional big data frameworks to HEP workflows is the lack of support for the ROOT file format in these frameworks. Laurelin[6] implements ROOT I/O with a pure Java library, with no bindings to the C++ ROOT[2] implementation, and is readily installable via standard Java packaging tools. It provides a performant interface enabling Spark to read (and soon write) ROOT TTrees, enabling users to process these data without a pre-processing phase converting to an intermediate format. |
id | cern-2814360 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-28143602022-11-17T14:30:15Zdoi:10.1051/epjconf/202125102072http://cds.cern.ch/record/2814360engMelo, AndrewShadura, OksanaLaurelin: Java-native ROOT I/O for Apache SparkComputing and ComputersApache Spark[1] is one of the predominant frameworks in the big data space, providing a fully-functional query processing engine, vendor support for hardware accelerators, and performant integrations with scientific computing libraries. One difficulty in adopting conventional big data frameworks to HEP workflows is the lack of support for the ROOT file format in these frameworks. Laurelin[6] implements ROOT I/O with a pure Java library, with no bindings to the C++ ROOT[2] implementation, and is readily installable via standard Java packaging tools. It provides a performant interface enabling Spark to read (and soon write) ROOT TTrees, enabling users to process these data without a pre-processing phase converting to an intermediate format.oai:cds.cern.ch:28143602021 |
spellingShingle | Computing and Computers Melo, Andrew Shadura, Oksana Laurelin: Java-native ROOT I/O for Apache Spark |
title | Laurelin: Java-native ROOT I/O for Apache Spark |
title_full | Laurelin: Java-native ROOT I/O for Apache Spark |
title_fullStr | Laurelin: Java-native ROOT I/O for Apache Spark |
title_full_unstemmed | Laurelin: Java-native ROOT I/O for Apache Spark |
title_short | Laurelin: Java-native ROOT I/O for Apache Spark |
title_sort | laurelin: java-native root i/o for apache spark |
topic | Computing and Computers |
url | https://dx.doi.org/10.1051/epjconf/202125102072 http://cds.cern.ch/record/2814360 |
work_keys_str_mv | AT meloandrew laurelinjavanativerootioforapachespark AT shaduraoksana laurelinjavanativerootioforapachespark |