Cargando…
Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider
Nonlinear magnetic errors in low-β insertions can have a significant impact on the beam-dynamics of a collider such as the CERN Large Hadron Collider (LHC) and its luminosity upgrade (HL-LHC). Indeed, correction of sextupole and octupole magnetic errors in LHC experimental insertions has yielded cle...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjp/s13360-022-03367-2 http://cds.cern.ch/record/2815835 |
_version_ | 1780973545815277568 |
---|---|
author | Maclean, Ewen Hamish Carlier, Felix Simon Dilly, Joschua Werner Giovannozzi, Massimo Tomas Garcia, Rogelio |
author_facet | Maclean, Ewen Hamish Carlier, Felix Simon Dilly, Joschua Werner Giovannozzi, Massimo Tomas Garcia, Rogelio |
author_sort | Maclean, Ewen Hamish |
collection | CERN |
description | Nonlinear magnetic errors in low-β insertions can have a significant impact on the beam-dynamics of a collider such as the CERN Large Hadron Collider (LHC) and its luminosity upgrade (HL-LHC). Indeed, correction of sextupole and octupole magnetic errors in LHC experimental insertions has yielded clear operational benefits in recent years. Numerous studies predict however, that even correction of more obstreperous nonlinearitites (up to dodecapole order) will be required to ensure successful exploitation of the HL-LHC. During HL-LHC design, it was envisaged that compensation of high-order nonlinearities would be based upon optimal correction of specific nonlinear resonances determined from magnetic measurement during construction. Experience at the LHC however, demonstrated that beam-based measurement and correction of the sextupole and octupole errors was an essential complement to this strategy. As such, significant interest also exists regarding the practicality of beam-based observables of multipoles up to dodecapole order. Based on experience during the LHC’s second operational run, the viability of beam-based observables relevant to dodecapole order errors in the experimental insertions of the HL-LHC are assessed and discussed in detail in this paper. |
id | cern-2815835 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-28158352023-03-31T10:11:23Zdoi:10.1140/epjp/s13360-022-03367-2http://cds.cern.ch/record/2815835engMaclean, Ewen HamishCarlier, Felix SimonDilly, Joschua WernerGiovannozzi, MassimoTomas Garcia, RogelioProspects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron ColliderAccelerators and Storage RingsNonlinear magnetic errors in low-β insertions can have a significant impact on the beam-dynamics of a collider such as the CERN Large Hadron Collider (LHC) and its luminosity upgrade (HL-LHC). Indeed, correction of sextupole and octupole magnetic errors in LHC experimental insertions has yielded clear operational benefits in recent years. Numerous studies predict however, that even correction of more obstreperous nonlinearitites (up to dodecapole order) will be required to ensure successful exploitation of the HL-LHC. During HL-LHC design, it was envisaged that compensation of high-order nonlinearities would be based upon optimal correction of specific nonlinear resonances determined from magnetic measurement during construction. Experience at the LHC however, demonstrated that beam-based measurement and correction of the sextupole and octupole errors was an essential complement to this strategy. As such, significant interest also exists regarding the practicality of beam-based observables of multipoles up to dodecapole order. Based on experience during the LHC’s second operational run, the viability of beam-based observables relevant to dodecapole order errors in the experimental insertions of the HL-LHC are assessed and discussed in detail in this paper.CERN-ACC-NOTE-2022-0020oai:cds.cern.ch:28158352022-07-14 |
spellingShingle | Accelerators and Storage Rings Maclean, Ewen Hamish Carlier, Felix Simon Dilly, Joschua Werner Giovannozzi, Massimo Tomas Garcia, Rogelio Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title | Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title_full | Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title_fullStr | Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title_full_unstemmed | Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title_short | Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider |
title_sort | prospects for beam-based study of dodecapole nonlinearities in the cern high-luminosity large hadron collider |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1140/epjp/s13360-022-03367-2 http://cds.cern.ch/record/2815835 |
work_keys_str_mv | AT macleanewenhamish prospectsforbeambasedstudyofdodecapolenonlinearitiesinthecernhighluminositylargehadroncollider AT carlierfelixsimon prospectsforbeambasedstudyofdodecapolenonlinearitiesinthecernhighluminositylargehadroncollider AT dillyjoschuawerner prospectsforbeambasedstudyofdodecapolenonlinearitiesinthecernhighluminositylargehadroncollider AT giovannozzimassimo prospectsforbeambasedstudyofdodecapolenonlinearitiesinthecernhighluminositylargehadroncollider AT tomasgarciarogelio prospectsforbeambasedstudyofdodecapolenonlinearitiesinthecernhighluminositylargehadroncollider |