Cargando…
Deep Learning fast inference on FPGA for CMS Muon Level-1 Trigger studies
With the advent of the High-Luminosity phase of the LHC (HL-LHC), the instantaneous luminosity of the Large Hadron Collider at CERN is expected to increase up to $\approx 7.5 \cdot 10^{34} cm^{-2}s^{-1}$. Therefore, new strategies for data acquisition and processing will be necessary, in preparation...
Autores principales: | Diotalevi, Tommaso, Lorusso, Marco, Travaglini, Riccardo, Battilana, Carlo, Bonacorsi, Daniele |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.378.0005 http://cds.cern.ch/record/2816664 |
Ejemplares similares
-
Fast inference on FPGA for the ATLAS Muon Trigger
por: Carnesale, Maria
Publicado: (2023) -
Development of Machine Learning based muon trigger algorithms for the Phase2 upgrade of the CMS detector
por: Diotalevi, Tommaso, et al.
Publicado: (2018) -
The BondMachine toolkit: Enabling Machine Learning on FPGA
por: Mariotti, Mirko, et al.
Publicado: (2019) -
Analysing CMS transfers using Machine Learning techniques
por: Diotalevi, Tommaso
Publicado: (2016) -
Graph Neural Network Architectures for Fast Simulation and Muon Momentum Inference at the CMS Detector
por: Hariri, Ali
Publicado: (2021)